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The Linear Regression: Least Squares Model

• Let xj be such a probability that a transaction is personal for industry code j

• ai,j – transaction amount for account i and industry code j

• bi – amount paid by personal remit for account i

• ∑jai,j xj – the expected personal expenses for account i

• We’d like to choose xj such that ∑jai,j xj matches bi for ALL i

• This model is called Quadratic Optimization

• Convex? 1st Order Optimality Conditions? Sufficient?

Min ෍

𝑖

෍

𝑗

𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖 2

s.t. 0 ≤ 𝑥𝑗 ≤ 1, ∀𝑗.

For the Business-or-Personal problem, we now minimize the sum of the 
squared errors (between predicted personal remittances and actual 
personal remittances).
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minimize 𝑊𝐷𝑙 𝒔 +𝑊𝐷r(s) +𝑊𝐷r(s)
s.t. s1+s2+s3+s4= 9, s ≥ 0

Wasserstein-Distance function, WD(s), is an implicit nonlinear but 
convex function defined by the minimum value of a transportation 

minimization problem from supply inventory distribution s.
This is a linearly constrained convex nonlinear optimization problem.

The Wasserstein Barycenter Optimization

Constraints:
s1+s2+s3+s4=9
(s1,s2,s3,s4)>=0
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Three possible demand 
distribution
scenario of 4 cities 
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐿(𝑅𝑒𝐿𝑢 𝑎𝑖(𝑤𝑖,𝑗) )

where 𝑤𝑖,𝑗 is the weigh variable at laye 𝑖 and edge 𝑗,

𝑎𝑖(𝑤𝑖,𝑗) is a linear function of weights

ReLu(·) is the function max{· , 0} , called Rectified Linear Unit function (a 
type of neural behavior) in Deep Learning. The problem is typically 

Nonlinear and Nonconvex.

Nonlinear Optimization in Deep Learning

First layer Last layer



SVM with Quadratic Optimization I
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SVM with Quadratic Optimization II
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ai

bj minimize ෍

𝑖

𝛿′𝑖 +෍

𝑗

𝛿"𝑗

0","10 +−+ jj

T

j xxb 

0','10 −+ ii

T

i xxa 

minimize σ𝑖 𝛿′𝑖 + σ𝑗 𝛿"𝑗 + 0.1||𝑥||2
2

Convex? 
1st Order 
Optimality 
Conditions? 
Sufficient?



Given message ai, according to the logistic model, the probability that it’s 

a SPAM is represented by

Thus, for the training data, we like to determine x0 and x from a set of 
training data (some spam some not) such that

exp(aT x + x0)i

1 + exp(ai
T x + x0)

.

The probability to give a ”right answer” for all training messages is

exp(aT x + x0)i

1+ exp(aT x + x0) 
∼ 

i

1, spam

0, not.

SVM vs Logistic Regression: Likelihood Probability

exp(aT x + x0)i

1 + exp(ai
T x + x0)

Π
i:spam

Π
i:not

exp(aT x + x0)i

1 + exp(ai
T x + x0)

1-
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Thus, we like to determine x0 and x to maximize

which is equivalent to maximize the log-likelihood probability

-∑
i:spam

log (1+ exp(−aT x − x0 )) −
i

∑
i:not

log ( 1 + exp(aT x + x0)).i

Or to minimize the convex (!) log-logistic-loss (with possible L2

regularization term ║x║2 added into the objective)

i

Logistic Regression: Max-Likelihood Probability

exp(aT x + x0)i

1 + exp(ai
T x + x0)

Π
i:spam

Π
i:not

exp(aT x + x0)i

1 + exp(ai
T x + x0)

1-

∑
i:spam

log (1+ exp(−aT x − x0 )) +
i

∑
i:not

log ( 1 + exp(aT x + x0)).i

1

1 + exp(-ai
T x - x0)

Π
i:spam

Π
i:not

1

1 + exp(ai
T x + x0)
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Convex? 
1st Order 
Optimality 
Conditions? 
Sufficient?



Convexity of log-exponential-sum
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The Hessian matrix is PSD everywhere so that LR is an 
Unconstrained Convex Program



Geometric Optimization and Convexification
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This a Linearly Constrained (Convex) Optimization Program



Dynamic Optimal Pricing 

11

𝑝: price decision
𝑞(𝑝) = exp( 𝑎 log( 𝑝) + 𝑏): demand volume function
a: elasticity coefficient (< 0)

b: fixed and/or extenality coefficient
c: unit cost

Profit function: (p-c)·q(p)=(p-c)· exp( 𝑎 log( 𝑝) + 𝑏)

Optimal price:

p∗= ቐ

𝑎𝑐

𝑎 + 1
if 𝑎 < −1

𝑐 otherwise
: optimal price to maximiza profit

Note that the optimal price does not depend on 𝑏.

Use historical data and regression method to learn the demand 
function coefficients, and then compute the optimal price and fixed 
it for the remaining time periods.
Dynamic Pricing: update demand coefficients using new data and 
recalculate optimal price.
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Online Combinatorial Auction I
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max𝐱,𝑤 ෍

j=1

n

𝜋j𝑥𝑗 −𝑤

s.t. ෍

𝑗=1

𝑛

𝐚𝑗 𝑥𝑗 − 𝟏𝑤 ≤ 𝟎,

0 ≤ 𝑥𝑗 ≤ 𝑞𝑗 , ∀𝑗

𝜋𝑗: the jth bidding price

𝐚𝑗: the jth bidding vector;

𝑞𝑗: the jth bidding share up limit;

Order 
fill

Price 
Limit 



Quanti
ty 

Limit q 

Argen
tina

Bra
zil

Italy Germ
any

Franc
e

x1 0.75 10 1 1 1

x2 0.35 5 1

x3 0.40 10 1 1 1

x4 0.95 10 1 1 1 1

x5 0.75 5 1 1

max{𝑥,𝑤,𝐬}෍

j=1

n

𝜋j𝑥𝑗 −𝑤 +෍

𝑖=1

𝑚

𝑢𝑖(𝑠𝑖)

s.t. ෍

𝑗=1

𝑛

𝐚𝑗 𝑥𝑗 − 𝟏𝑤 + 𝐬 = 𝟎,

0 ≤ 𝑥𝑗 ≤ 𝑞𝑗 , 𝐬 ≥ 𝟎.

u s : 𝐍𝐨𝐧𝐥𝐢𝐧𝐞𝐚𝐫 𝐂𝐨𝐧𝐜𝐚𝐯𝐞 𝐕𝐚𝐥𝐮𝐞 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧

𝑢(𝑠) = 𝜇 ln( 𝑠)

Logarithmic function with a positive weight μ

𝑢(𝑠) = 𝜇(1 − exp( − 𝑠/𝜇))

Exponential function with a positive weight μ

𝐍𝐨𝐰 𝐂𝐨𝐧𝐬𝐢𝐝𝐞𝐫 𝐭𝐡𝐞 𝐨𝐧𝐥𝐢𝐧𝐞 𝐝𝐞𝐜𝐢𝐬𝐢𝐨𝐧𝐬
And the nonlinear optimization model



Sequential Convex Programming Mechanism: OCA II
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Suppose the order fill decision xj* from j=1 to 
k have been made. Now the kth bidder arrives 
and we solve the following convex 
optimization problem

Slack variables, or

shares held by us.

Outstanding shares

already sold to bidders.
Value functions 

to hold own shares



BuyersGoods

1

2

3

n

1

2

m Wm,Um(.)

W2,U2(.)

W1,U1(.)

.

.

.

.

s1,P1

s2,P2

s3,P3

sn,Pn

.

.

Fisher’s Equilibrium Market Model
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•Buyers have a 

money budget (wi) 

to buy goods and 

maximize their 

individual utility 

functions u(.); 

•Producers have

goods (sj) to sell 

for money

•The equilibrium price is an assignment of prices (pj) to goods so that 

every buyer could buy a maximal bundle of goods and also clear the 

market, meaning that all the money are spent and all goods are sold.



Buyer i =1,…,m optimization problem for given prices pj , 
j =1,…,n.

maxx ui
T xi  :=  ∑j uijxij

s.t.      pT xi  :=  ∑j
pj xij  ≤ wi,

∀ __j,xij  ≥ 0,

The equilibrium price vector p is the one to make

∑i x*ij = sj

where x*i is an optimal solution vector of the above problem 
with given prices p for all i=1,…,m.

Each Buyer’s Maximization and Equilibrium Price
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Buyer 1 and 2’s optimization problems for given prices px , py

on two goods x and y, each has one unit on the market.

6 72
x1 =

78
, y1 = 1, x2 =

78
, y2 = 0

satisfy all these conditions so 
that the prices are equilibrium 
prices

px = 3
, py =

26 13

3

Example of Fisher’s Model and Equilibrium Conditions
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max 2x1 + y1

s.t. px · x1 + py · y1 ≤ 5,

x1, y1 ≥ 0;

max 3x2 + y2

s.t. px · x2 + py · y2 ≤ 8,

x2, y2 ≥ 0. 

pxλ1-2 ≥ 0
pyλ1-1 ≥ 0

x1

y1

˄
˄ x1+x2 =1

y1+y2 =1 
pxλ2-3 ≥ 0
pyλ2-1 ≥ 0

x2

y2

˄
˄



max ∑i wi  log(ui  xi)
T

s.t. ∑i  xij  = sj  ,

xij  ≥ 0,

∀__j =1,…,n

∀__i, j,

Theorem   (Eisenberg and Gale 1959) The optimal 

Lagrange multiplier vector of the equality 

constraints of the social optimization problem is the 

equilibrium price vector.

Aggregate Social Optimization Problem
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max 5 log(2x1 + y1) + 8 log(3x2 + y2) 

x1 + x2 = 1,

y1 + y2 = 1,

(x1, x2, y1, y2) ≥ 0.

s.t.

Aggregate Social Problem for the Example
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10
2x1 + y1

24

≤ p ˄ x1x
5

2x1 + y1

8

3x2 + y2
≤ px ˄ x2 3x2 + y2

≤ py ˄ y1

≤ py ˄ y2

The optimality conditions of the social  
optimization problem.

5λ1=2x1 +y1

8λ2=3x2 +y2

By assign 

these conditions 
coincides The 
equilibrium conditions
on Slide 16.



Given a graph G = (V, E) and sets of partial distance 
measurements, say {dij  : (i, j) ∈ E} , the goal is to compute 
a realization of G in the Euclidean space Rd for a given low 
dimension d, i.e.

•to place the nodes/vertices of G in Rd such that

•the Euclidean distance between every pair of adjacent 

vertices     (i, j) ∈ E equals the measurements dij  ∈ E.

In general the localization may not be fixed since the 
configuration can rotate and translate. Thus, we assume 
that the positions of  (d+1) sensors are known, and they 
called anchors.

This problem has wide applications …

Sensor Network Localization I 
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Sensor Network Localization II  
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This is a system of quadratic equations (after square both sides) and 

nonconvex, in contrast to a system of linear equations. 

Does the system have a solution/localization of all xj ’s? Is the 

solution/localization unique? Is there a certification for a solution to 

make it reliable or trustworthy? Is the system partially localizable with 

certification? 

To get something tractable, we can consider optimization formulation 

or convex relaxation approaches.
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Sensor Network Localization III 

1,...,2,1   ,   :Anchors

),(  ||||    

+==

=−

diax

Ejidxx

ii

ijji

Find d-dimensional points/vectors xj , j=d+2,d+3,…,n, such that



This remains nonconvex quartic polynomial minimization (with many 

local minimums)

We would use various algorithms to tackle the problem, including 

some convex relaxation approaches, which would be discussed later in 

the class.
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SNL: Nonlinear Least Squares and Convex Relaxation

One can form a nonlinear least square minimization problem

minimize   ∑(ij)in E ( ║xi-xj║
2- (dij)

2 )2

s.t. xi=ai, for i=1,…,d+1

minimize  0Tx:

s.t. ║xi-xj║ ≤ (dij) for (I,j) in E
where       xi=ai, for i=1,…,d+1

Convex? 
1st Order 
Optimality 
Conditions? 
Sufficient?


