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Recall Mathematical Optimization Problem Form: 

(MOP)

s.t. x ∈ F .

min f (x)

Mathematical Optimization Problems
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The first question: does the problem have a feasible solution, that is, a 

solution that satisfies all the constraints of the problem, that is, in F .

The second question: How does one recognize or certify a (local) 
optimal solution? We answered it for LP by developing Optimality 
Conditions from the LP duality and Complementarity.

But what about a generally nonlinearly constrained and objective 
optimization problem? We need more general Optimality Condition 
Theory.



• The objective and constraint are often specified by functions that are 

continuously differentiable or in C1 over certain regions.

• Sometimes the functions are twice continuously differentiable or in C 2 over 

certain regions.

• The theory distinguishes these two cases and develops first-order 

optimality (or KKT) conditions and second-order optimality conditions. The 

solution x, together with the multipliers y, is called an KKT solution/point if 

they satisfy the KKT conditions.

• For convex optimization (CO), first-order or KKT optimality conditions 

suffice (under mild technical assumptions). Also, these set of conditions are 

necessary for nonlinearly constrained optimization under some mild 

technical assumptions.  
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Remarks of Optimality Condition Theory



Mathematical Optimization Problem Form: 

(MOP1)

s.t. a ≤ x ≤ e.

min f (x)

Consider Minimization Problems with One Variable
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Which point in the constraint interval [a  e] 

can be possibly a minimal solution of f .

Test of a: f’(a) ≥ 0 (feasible direction is +)
Test of e: f’(e) ≤ 0 (feasible direction is -)
Test of any point strictly inside the interval: f’(x)=0 (feas. direction is +/-)

To summarize the three cases, one can introduce two Lagrange 
multipliers ya ≥ 0 and ye ≥ 0 so that the optimality conditions can be 
characterized as: 

f’(x)-ya+ye=0, ya(x-a)=0, ye(e-x)=0,
This is called the (first-order) Optimality/KKT Condition of the problem.
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f

Figure : Possible local minimizers of one-variable function
or KKT points/solutions: b), c), d) and e)
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Mathematical Optimization Problem Form: 

(MOP1)

s.t. x- a ≥ 0  (ya ≥ 0), e - x ≥ 0 (ye ≥ 0).

min f (x)

Optimality Conditions via the Lagrange Function
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The Lagrange function or Lagrangian:

L(x, ya ≥ 0, ye ≥ 0)=f (x) - ya(x - a)- ye(e - x)

Therefore, together with complementarity, the first equation of the 

optimality conditions can be simply written as: 

L’x(x, ya ≥ 0, ye ≥ 0)= f’(x)-ya+ye =0, ya(x - a)=0, ye(e - x)=0

Consider a specific function case
L(x, ya ≥ 0, ye ≥ 0)= x 2 - ya(x - a)- ye(e - x)

[a   e]=[-2   -1]: x=-1, ya =, ye =,   
[a   e]=[-1    1]:  x=0, ya =, ye =
[a   e]=[ 1     2]:  x=1, ya =, ye =  (and their physical interpretation?)
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Lagrange Multipliers and Functions for Multi-Variate 
Linear and Nonlinear Optimization

min f (x) 

ci(x) (≥,=,≤) 0, i=1,…,ms.t.

Assign each constraint a multiplier yi, and its sign satisfies

yi (≥,”free”,≤) 0, i=1,…,m

The Lagrange Function

L(x,y) = f(x)- ∑i yici(x)
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The (First-Order Necessary) Optimality Conditions

Original Decision Constraints (ODC)

ci(x) (≥,=,≤) 0, i=1,…,m

Multiplier Sign Conditions (MSC)

yi (≥,”free”,≤) 0, i=1,…,m

Lagrange Derivative Conditions (LDC)

∂L(x,y)/∂xj = 0, for all j=1,…,n.

Complementarity Slackness Condition (CSC)

yi ci(x) = 0, for each inequality constraint i.

For maximization,
just flip the sign 
of multipliers, and 
every condition
remains the same.

Short-Cut in dealing 
ODC: xj≥0
LDC:  ∂L(x,y)/∂xj ≥0
CSC: xj∂L(x,y)/∂xj = 0



Consider the unconstrained problem, where f is
differentiable on Rn ,

(UP)
s.t. x ∈ Rn.

min f (x)

Theorem 1  Let x be a (local) minimizer of (UP) where f 

is continuously differentiable at x . Then

∇ f(x ) = 0.
These conditions are sufficient if f(.) is a convex function 
of x.

Optimality Conditions for Unconstrained Problems
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Quadratic Function:

A minimizer or maximizer x must satisfy

∇ f(x ) = 2Qx − 2c = 0 or Q x = c.

Pricing Example with demand functions:

Profit (x)= x1d1(x)+x2d2(x) = x1(- x1 + x2)+x2(-2x2 + x1 )+2x1+3x2

Quadratic Optimization
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d1(x) = 2 - x1 + x2

d2(x) = 3 -2x2 + x1 



Consider the linear equality constrained problem, where f is
differentiable on Rn ,

Theorem 2  Let x be a (local) minimizer of (LEP) where function f is 

continuously differentiable at x . Then

∇ f(x) - AT y = 0

for a vector y = (y1; ... ; ym) ∈ Rm, which are called Lagrange (or 

dual) multipliers. These conditions are sufficient if f(.) is convex.

The geometric interpretation: the objective gradient vector is 

perpendicular to (linear combination) or the objective level set 

tangents the constraint hyperplanes (normal directions).

Linear Equality Constrained Problems

(LEP)
s.t. Ax = b.

L(x,y) = f(x)-yT(Ax - b)

min f (x)
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The objective level set tangents the constraint hyperplane
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Linear Equality Constrained Problems

min (x1 − 1)2 + (x2 − 1)2

x1 + x2  = 1.s.t.

L(x,y)=(x1 − 1)2+(x2 − 1)2-y(x1+x2 -1)

2(x1-1) = y

2(x2 -1)=y,

(y+2)/2+(y+2)/2=1  →
y=-1 (physical interpretation?)



Consider the linear inequality constrained problem, where f is
differentiable on Rn ,

Theorem 3  Let x be a (local) minimizer of (LIP) where function f is 

continuously differentiable at x . Then

∇ f(x ) - AT y = 0, y ≥ 0 , and yi(Ax - b)i=0, for all  i=1,…,m

for a vector y = (y1; ... ; ym) ∈ Rm, which are called Lagrange or dual 

multipliers. These conditions are sufficient if f(.) is convex.

The geometric interpretation: the objective gradient vector is a 

conic combination of the normal directions of the binding/active 

constraint hyperplanes, same as in the LP case.

Linear Inequality Constrained Problems

(LIP)
s.t. Ax ≥ b.

L(x,y) = f(x)-yT(Ax - b) where y≥0

min f (x)
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The constraint cannot be binding or active so that we ignore it and have y=0, 
which leads to x1 = x2 = 1.
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Linear Inequality Constrained Example I

min (x1 − 1)2 + (x2 − 1)2

x1 + x2  ≥ 1.s.t.

(y+2)/2+(y+2)/2=1 →
y=-1.

L(x,y)=(x1 − 1)2+(x2 − 1)2-y(x1+x2 -1)

2(x1-1) –y =0,

2(x2 -1)-y =0,
y≥0, y(x1+x2 -1)=0 .

Try the constraint binding active



The constraint will be binding or active.
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Linear Inequality Constrained Example II

min (x1 − 1)2 + (x2 − 1)2

-x1 - x2  ≥ -1.s.t.

x1

x2

(-y+2)/2+(-y+2)/2=1 →
y=1.

L(x,y)=(x1 − 1)2+(x2 − 1)2-y(-x1-x2 +1)

2(x1-1) –y =0,

2(x2 -1)-y =0,
y≥0, y(x1+x2 -1)=0 .

Try the constraint binding active



Consider the linear equality and non-negativity constrained
problem, where f is differentiable on Rn ,

Theorem 4  Let x be a (local) minimizer of (LENP) where function f 

is continuously differentiable at x . Then

∇ f(x ) - AT y =r ≥ 0 , xj(∇ f(x ) - AT y )j=0, for all j=1,..,n.

for a (shadow price) vector y = (y1; ... ; ym) ∈ Rm, which are also 

called Lagrange or dual multipliers, and (reduced cost vector) 

∇ f(x) - ATy . These conditions are sufficient if f(.) is convex.

Linearly Constrained Problems

(LENP) s.t. Ax = b,
x ≥ 0

L(x,y) = f(x)-yT(Ax - b)-rTx where r ≥ 0

min f (x)
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The Log-Barrier Example

min - log(x1) - log(x2 )

x1 + 2x2  = 1, x1 ,x2  ≥ 0,s.t.

-(1/x1) = y

-(1/x2 )=2y,

-(1/y)+2(-1/2y)=1
y=-2.
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x1 = 1/2

x2 =1/4.

min - log(x1) - log(x2 ) - … - log(xn)

Ax = b, x1 ,x2  …, xn ≥ 0,s.t.

There is a y such that

-(1/xj) = aj
Ty , j=1,…,n; or

xj(-aj
Ty)j = 1, for all j.

The optimal 
solution is 
called analytical 
center of the 
feasible region



The Constrained Quadratic Example

min -x1(- x1 + x2)-x2(-2x2 + x1 )-2x1-3x2

x1 - 2x2  = 0, x1 ,x2  ≥ 0,s.t.

2x1-2x2 -2 = y

-2x1+4x2 -3 = -2y,

x1-2=y
-3=-2y
y=1.5
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x1 = 3.5

x2 =1.75.

min xTQx - 2cTx

Ax = b, (x1 ,x2  …, xn ) ≥ 0,s.t.

There is a y such that

2Qx - 2c ≥ ATy ; and

2xTQx-2cTx=bTy.
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Nonlinearly Constrained Optimization Examples

01)()(    s.t.

)1()1(min  

2

2

2

1

2

2

2

1

=−+

−+−

 xx

  xx

01)()(    s.t.

)1()1(min  

2

2

2

1

2

2

2

1

−+

−+−

 xx

  xx

01)()(    s.t.

)1()1(min  

2

2

2

1

2

2

2

1

+−

−+−

 xx-

  xx



x1

x2
)1)()(()1()1(:LF

01)()(    s.t.

)1()1(min  

2

2

2

1

2

2

2

1

2

2

2

1

2

2

2

1

−+−−+−

=−+

−+−

xxyxx

xx

  xx

01)()(

0
2

2

)1(2

)1(2

:Conditions KKT

2

1

2

1

2

1

2

1

=−+

=







−









−

−

xx

y
x

x

x

x

 

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #5 20

Optimality Conditions of Example I
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Optimality Conditions of Example II
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Optimality Conditions of Example III
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The KKT optimality condition or characterization of a (local) minimizer 
may not hold if the constraint qualification is not satisfied; that is, a 
minimizer may not meet the so-called “necessary” optimality 
conditions under some pathological circumstances (which occurs only 
when nonlinear constraints present).

The Need Of Constraint Qualification

min 𝑥1
s.t. (𝑥1)

2 + (𝑥2− 1)2 − 1 ≤ 0,
(𝑥1)

2 + (𝑥2 + 1)2 − 1 ≤ 0

x1

x2
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0,0 21 == xx

But it does not satisfy the KKT conditions  



Constraint Qualification
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• For an optimizer to be an KKT solution one needs some 
technical assumptions, called constrained and/or 
regularity qualifications. 

• For equality constraints, the standard qualification is that 
the Jacobian matrix on the test solution is full rank, or the 
gradient vector of each equality constraint are linearly 
independent, at the minimizer.

• For inequality  constraints, the standard qualification is 
that there is a feasible direction at the test solution 
pointing to the interior of the feasible region. 

• When the problem data are randomly perturbed a little, 
these constraint qualifications would be met with 
probability one.

• These qualifications are not needed when the constraints 
are linear/affine.



The fundamental concept of the first order necessary condition
(FONC) in optimization is that there is no feasible and descent 
direction d at same time

The fundamental concept of the second order necessary condition 
(SONC) is that even the first order condition is satisfied at x, then one 
must have also dT∇ 2f (x)d ≥ 0 for any feasible direction or ∇ 2f (x) is 
positive definite at x.

Consider f(x) =x2 and f(x)=-x2, and they both satisfy the first-order 
necessary condition at x =0, but only one of them satisfy the second-
order condition.

The second order condition would be sufficient if  dT∇ 2f (x)d > 0 for 
any feasible direction d, while meet FONC.

Second Order Optimality Condition for 
Unconstrained Minimization
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The Lagrange Function: L(x,y) = f(x)- ∑i yici(x), yi (≥,”free”,≤) 0, i=1,…,m

The second order necessary condition (SONC) is that even the FONC is 
satisfied at x and y, then they must meet also

dT∇ x
2L (x,y)d ≥ 0  for all d such that

∇ ci(x)d=0   for all i in A(x)
where A(x) represents the index set of all active constraints (that is, the 

index set of all i such that ci(x)=0).

The second-order condition would be sufficient if dT∇ x
2L (x,y)d > 0 

while meet FONC.

Second Order Optimality Condition for Constrained 
Minimization
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min f (x) 

s.t. ci(x) (≥,=,≤) 0, i=1,…,m
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Who satisfies the second order necessary condition?
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Only the one with y=1-21/2 meets the 
SONC! (and it is also Sufficient)
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Summary of 1st Order KKT Optimality Test

Is x a (local) optimizer?

“Definitely Yes” under 
certain circumstances

such as convex 
optimization

1st Order KKT 
Optimality  

Condition Test

x

Is x not a (local) optimizer?

Passed Failed

“Definitely Not” under 
certain constraint 

qualifications (CQ):
a) Feasible region has an 

interior, or
b) x is a regular point on the 

hypersurface of active 
constraints, or

c) The constraints are linear

Higher 
Order Test
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Minimum and KKT Solutions

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #5

1st order KKT Local Opt Global Opt

KKT vs Local opt

KKT vs Local opt
with CQ 

KKT vs Global opt
for CO with CQ 

Local vs Global Opt


