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LP in Standard (Equality) Form
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Reduction to Standard Form
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•max cTx to min  – cTx

•Eliminating ”free” variables: substitute with the 

difference of two nonnegative variables

x := xl − xll,   (xl, xll) ≥ 0.

•Eliminating inequalities: add a slack variable

aT x ≤ b = ⇒ aT x + s = b,   s ≥ 0

aT x ≥ b = ⇒ aT x − s = b,   s ≥ 0



Reduction of the Production Problem
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min -x1 -2x2

s.t. x1 +x3 = 1

x2 +x4 = 1

x1 +x2 +x5 = 1.5

(x1, x2, x3, x4, x5) ≥ 0
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x3, x4,and x5 are called slack variables

We know how to identify corners/extreme-points of the LP feasible 

region defined all by linear inequalities. What about corners in this LP 

standard equality form?



How to Identify Corners in LP Equality Form
Basic and Basic Feasible Solution
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In the LP standard form, select m linearly independent columns, 

denoted by the variable index set B, from A. Solve

AB xB  = b

for the dimension-m vector xB . By setting the variables, xN , of x 

corresponding to the remaining columns of A equal to zero, we 

obtain a solution x such that Ax = b.

Then, x is said to be a basic solution to (LP) with respect to the 
basic variable set B. The variables in xB  are called basic variables, 
those in xN  are nonbasic variables, and AB  is called a basis.

If a basic solution xB  ≥ 0, then x is called a basic feasible solution, 
or BFS. Note that AB and xB  follow the same index order in B.

Two BFS are adjacent if they differ by exactly one basic variable.



BS of the Production Problem in Equality Form
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x1 +x3 = 1

x2 +x4 = 1

x1 +x2 +x5 = 1.5

(x1, x2, x3, x4, x5) ≥ 0

Basis 3,4,5 1,4,5 3,4,1 3,2,5 3,4,2 1,2,3 1,2,4 1,2,5

Feasible? √ √ √ √ √

x1 , x2 0, 0 1, 0 1.5, 0 0, 1 0, 1.5 .5, 1 1, .5 1, 1

x1

x2



BFS and Corner Point Equivalence Theorem 
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Theorem   Consider the feasible region in the standard 
LP form. Then, a basic feasible solution and a corner 
(extreme) point are equivalent; the formal is algebraic 
and the latter is geometric. Moreover, Two corners are 
neighboring if exact one variable difference in basis

• Feasible directions of an BFS: an increasing direction 
of the nonbasic variables (they equal 0 right now).

• Extreme feasible direction: the increasing direction 
of a nonbasic variable xj: xB =(AB)−1b - (AB)−1ajxj

• Optimality test: No improving (extreme) feasible
direction exists



Reduced Objective

Feasible Directions at a BFS and Optimality Test
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• Recall at a BFS: AB xB +ANxN = b, and xB ≥ 0 and xN = 0 . 

Thus we can express xB in terms of xN, 

xB =(AB )-1b-(AB )-1ANxN .

Then,  cTx= cT
B xB + cT

NxN =(cT
N - cT

B (AB )-1AN) xN + cT
B(AB )-1b 

• Note that increase any one variable of xN is an extreme 

feasible direction. Thus, for the BFS to be optimal, any 

(extreme) feasible direction must be an ascent direction, or                

(cT
N - cT

B (AB )-1AN) ≥ 0 

is necessary and sufficient for the current BFS being optimal!

• This vector is called the reduced cost coefficient vector or 

reduced gradient vector from the current BFS. Note that 

reduced cost coefficients for basic variables are all zeros.



The Shadow-Price and Reduced Cost Vectors
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We first introduce and compute an intermediate 
shadow-price/multiplier vector:

yT = cT
B (AB )-1 , or  yT AB = cT

B, 

by solving a system of linear equations.

Then we compute reduced cost rT=cT-yTA, where rN is 
the reduced cost vector for nonbasic variables (and 
rB=0 always).

If one of rN is negative, then an improving (extreme) 
feasible direction is find by increasing the 
corresponding nonbasic variable value.

T



Yinyu Ye,  Stanford, MS&E211 Lecture Notes #4 10

min −x1 −2x2

s.t. x1 +x3 = 1

= 1x2 +x4

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.
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In the LP production example, suppose the basic variable set  B = 
{3, 4, 5} .

Thus, increasing either x1 and x2 is a feasible and improving
direction and the variable is called the incoming basic variable…
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In the LP production example, suppose the basic variable set  B = 
{1, 2, 3} .
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min −x1 −2x2

s.t.         x1 +x3 = 1

= 1x2 +x4

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.

Thus, this BFS is optimal



When a BFS with basis B, xB , is optimal?

where the shadow-price/multiplier vector yT=cB
T(AB)−1. 

Moreover        OV = cTx = cB
TxB = cB

T(AB)−1b = yTb
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Summary of BFS Optimality Test/Condition

xB =(AB)−1b ≥0, xN =0

rT = cT- yTA ≥  0

The existence of such a shadow-price/multiplier vector y is 

served as a certificate of the optimality of corner feasible 

solution x. Such a y is also called optimal shadow-price vector.

Dos this optimal test/condition apply to any feasible solution x?



This is a system of linear inequalities and equations. Thus it is 

easy to verify whether or not a pair (x, y) is optimal by a 

computer.
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The Optimality Condition Theorem

Theorem A feasible solution x in the LP standard 
equality form is optimal if and only if there is an 
optimal shadow-price vector y such that: 

⎩

⎧
⎪

⎨
(x, y) ∈ (Rn , Rm ) :

⎪

cT x − bT y = 0

Ax              = b, x ≥ 0

AT y            ≤  c

⎫

⎪⎬
,

⎪
⎪

⎭

0         

,    s.t.
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=

x

bAx

xcT
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Sketch Proof of The Optimality Condition Theorem

Consider any vector y who satisfies
AT y ≤ c.

Then for any feasible solution x in the LP standard 
equality form, we must have

cT x−bT y= cT x−(Ax)T y= cT x−yT(Ax)=(cT- yTA)x ≥ 0.

That is, the value bT y is a lower bound on any feasible 
objective value cT x. 

Thus, if cT x = bT y, cT x must be the minimal among all 
possible feasible solution x. 
(Of course, bT y must be maximal among all possible y
such that AT y ≤ c, which is called the dual program; 

more on this later.)

0         

,    s.t.

   min



=

x

bAx

xcT



Since rTx = ∑n
j=1 rjxj and all entries are nonnegative,  the condition 

implies that rjxj =0 for all j; that is, for each j, at least one of rj and xj 

is 0. We often call this a complementarity property: two 

nonnegative vectors r and x are complementary to each other.
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An Equivalent Optimality Condition

A feasible solution x in the LP standard equality 
form is optimal if and only if there are vectors 
(y, r) such that: 

⎩

⎧
⎪

⎨
(x, y, r) ∈ (Rn , Rm, Rn):

⎪

cT x − bT y=0 or rTx = 0

Ax              = b, x ≥ 0

AT y  + r      = c, r ≥ 0

⎫

⎪⎬
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⎪
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⎭
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Physical Explanation of Complementarity Condition

Complementarity or Complementary-Slackness Phenomenon typically 

occurs when optimization with inequality constraints.

Consider     min   f(x),    s.t. x ≥ 0

Two possible Scenarios:

x*= 0 & f’(0) ≥ 0                   or                       x*>0 & f’(x*)=0

In both cases, the complementarity condition holds: 

first, the derivative at the minimizer must be nonnegative;

second, it must be zero if the minimizer is in the interior of the 

constraint set, that is, the product of the derivative and the slack 

value mut be zero

xX* X*x

f(x)f(x)



Given a BFS in the LP standard form with basis AB

xB = (AB)−1b > 0,       xN = 0,

so that small change in b does not change the optimal basis 
and the shadow price vector remains:

yT = cB
T(AB)-1

At optimality, the OV is a function of b:

cT x = cB
T xB = cB

T (AB)−1b = yT b.

Thus, when b is changed to b+Δb, then the new OV 

OV+= cB
T xB = cB

T (AB)−1(b+Δb)= yT (b+Δb)=OV+ yTΔb

when the basis is unchanged.
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Interpretation of y: Shadow Price Vector of RHS b

=Net Change

OV(b) is a convex function of b
and ∇ OV(b) = y* 

OV(b):=min 𝑐𝑇𝑥
s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
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Recall in the LP production example, the BFS with B = {1, 2, 3} is 

optimal with x = (½, 1, ½, 0, 0)T and y = (0,  -1,  -1)T 

min −x1 −2x2

s.t.         x1 +x3 = 1

= 1x2 +x4

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.

The current OV= -2.5
• If b1 is increased or decreased a little, does OV change?
• If b2 is increased or decreased a little, does OV change? How 

much?
• If b3 is increased or decreased a little, does OV change? How 

much?
This is called sensitivity analyses and an economical interpretation of y
.



The Lagrange Function or Lagrangian was introduced for a 
constrained optimization problem to make it into a less 
constrained or unconstrained optimization problem. 
For LP in the standard equality form:

minx L(x,y) = cTx- yT(Ax-b), s.t. x ≥ 0;

where multipliers y in the Lagrange function play the role of 
penalty weights on equality constraint violations. One can adjust 
them whenever a constraint is violated at the minimizer of the 
Lagrange optimization problem (in the text book, we used λ=-y)

The goal is to select y such that the Lagrangian minimization 

yields an optimal solution x that is also optimal to the original 

constrained problem. It turns out such y must be an optimal 
shadow-price vector of the original LP problem.
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The Lagrange Function and Theory

min 𝑐𝑇𝑥
s.t. 𝐴𝑥 − 𝑏 = 0,

𝑥 ≥ 0
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min −x1 −2x2

s.t.         x1 +x3 = 1

= 1x2 +x4

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.

For this example, the Lagrange function would be

L(x,y)=−x1−2x2 - y1(x1+x3 -1)- y2(x2+x4 -1)- y3(x1+x2 + x5 -1.5)

If we set y=(0,-1,-1)T then L(x, (0,-1,-1)T)= x4 + x5 -2.5. 
Therefore, minimize it subject to each variable to be nonnegative 

implies x4 =0 and x5 =0. Together with the equality constraints 
Ax=b in the original problem they yield the optimal solution for 
the original optimization problem.
Any other setting of y values in the Lagrangian will not make x
possibly feasible to the original problem - either an xj is negative 
or Ax≠b.



L(x,y) = cTx- yT(Ax-b)
Note the gradient vector with respect to x is

∇x L(x,y) = c- ATy
which we also called the reduced cost vector r.   
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LP Optimality Condition via the Lagrange Function 

Theorem A feasible solution x in the LP standard 
equality form is optimal if and only if there is 
multiplier vector y such that the gradient vector with 
respect to x of the Lagrange function is nonnegative 
and it is complementary to x.

In fact, consider any  minx f(x) s.t. x ≥ 0. 
x is minimal only if ∇ f(x) ≥ 0 and it is complementary 
to x.

min 𝑐𝑇𝑥
s.t. 𝐴𝑥 − 𝑏 = 0,

𝑥 ≥ 0



The Lagrange Function or Lagrangian can include variable 
nonnegativity as part of the constraints so that the variable are 
all “free”. Then for LP in the standard equality form:

minx L(x,y,r) = cTx- yT(Ax-b)-rTx.
where multipliers in y in the Lagrange function are 
penalty weights on equality constraint violations, 

and multipliers in r are penalty weights on inequality 

constraints x≥0 . Note that each penalty weight in r must be 

nonnegative since we only penalize the corresponding entry in x 
who becomes negative but no penalty otherwise.  
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Handling Nonnegative Variables as Constraints

Theorem A feasible solution x in the LP standard equality form 
is optimal if and only if there are multiplier vectors y and r≥0
such that the gradient vector with respect to x of the Lagrange 
function is a zero vector and r is complementary to x.

min 𝑐𝑇𝑥
s.t. 𝐴𝑥 − 𝑏 = 0,

𝑥 ≥ 0


