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would be available in the Book Store)
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Today’s Agenda

 Hidden LPs

— Supporting Vector Machine when strict separation
may not be possible

— Air traffic landing time control

— Financial Big-Data analysis

— Combinatorial auction for information market

— Reinforcement Learning/Markov Decision Process



Supporting Vector Machine Revisited

bJTX + X0 < -1

minimize { },; max(1—a

T

l

x —xq,0) +ijax(bij+x0 +1,0) }
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Supporting Vector Machine Revisited

bJTX + X0 < -1

!

T " "

minimize Z 5 + z 8"
L J

Yinyu Ye, Stanford, MS&E211 Lecture Notes #2




How to Linearize the Max Function

Introduce an auxiliary variable w

man=1,...,m{Z a;jxi} =w
i

Relax it to linear inequalities

Eai]-xi SW,j= 1,...,m

i

If w Is minimized, the equality must hold
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AlIr Traffic Control

PBS Nolan, Fundamentals of Air Traffic Contr.ol

Boeing CNN
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Oakland Center

120 I

Real data ETMS data
(playback mode) courtesy of NASA
Ames



Air Traffic Landing Control

« Airflightj,j=1, ..., n, must arrive at the airport within the time interval
[a;, b; ] in the order of 1, 2, ..., n.

« The airport wants to find the actual arrival time for each air plane such that

the narrowest metering time (inter-arrival time between two consecutive
airplanes) is the greatest.

* Let: t;be the arrival time of flight j. Then

maximize | minj—; n,_1{tj41 —t;}]
S.T. ajSthbj,j=1,...,Tl.

This is not an LP problem!
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How to Linearize the Min Function

Introduce an auxiliary variable 4

minj=y, n-1{tj+1 — ¢t} = A

Relax it to linear inequalities

tj+1—tj2A, j=1,...,7’l—1.

If 4 Is maximized, the equality must hold

max A
S.t. ajSthbj,j=1,...,n,
tj+1—tj—A20,] — 1,...,n—1.

This is an LP problem!
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Big Data: Business or Personal?

Build a model that will predict a probability for each credit card transaction
indicating whether the transaction is business or personal related.

— There is no training data where particular transactions are identified as
being personal, we used personal remittances as the best proxy

— On the transaction side, we focused on the industry code of each
transaction as a key initial differentiator between transactions

— Developed a LP model to establish probabilities for each industry code
that indicate the likelihood that dollars spent in that code will be personal
spending.



Industry Code

995
25

728
729
429
415
87

504
616
215
404
443
457
522
463
757
407
680
465
400
416
428
414
793
412
787
447
427
554
603

Transaction Types by Industrial Codes

Description
CLUB - WAREHOUSE
DEPARTMENT STORE - MASS MERCHANDISER
GASOLINE/OIL COMPANY - NATIONAL DEALER
GASOLINE/OIL COMPANY - INDEPENDENT DEALER
SHOP - HOME IMPROVEMENT
DEPARTMENT STORE - FULL SERVICE
INTERNET TRAVEL
SHOP - ELECTRONIC GOODS
COMMUNICATION - CABLE & BROADCAST SERVICES
AUTO SERVICES - MOTOR RELATED SERVICES/DEALER
AUTO SERVICES - AUTO SALES & SERVICE
SHOP - SPORTING GOODS
SHOP - CHEMIST/PHARMACY
SHOP - FURNITURE
SHOP - JEWELRY
ENTERTAINMENT - TICKET AGENT - COMPANY
SHOP - CLOTHING - FAMILY
SHOP - COMPUTER HARDWARE
SHOP - LIQUOR STORE
AUTO SERVICES - VEHICLE ACCESSORIES
DEPARTMENT STORE - SPECIALITY
SHOP - HOME FURNISHINGS
SHOP - CLOTHING - WOMEN'S
TRAVEL - TOUR OPERATOR GENERAL
SHOP - CLOTHING - MEN'S & WOMEN'S
TRAVEL - NON - "TAGENT RETAILER
SHOP - SHOES - MEN'S ONLY
SHOP - HARDWARE/DO IT YOURSELF
MAIL ORDER SELF IMPROVEMENT/BUSINESS SEMINARS
SERVICES - BEAUTY SHOPS/BEAUTICIAN
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Business Analytics

For each of the industry codes, the model will determine a probability which
Indicates the likelihood that a transaction was personal.

Each Column represents

an Industry Code Personal Remittances

A
- —- ~ [ \
Account 1 2 3 n Actual
1 $156 $0 $87 $25 $200
2 $200 $25 $0 $0 $195
4
$0 $134 $35 $60 $210

Value of
transac'glons N
period




Model Example

For each of the industry codes, the model will determine a probability (in red) which
indicates the likelihood that a transaction was personal. The goal is to minimize
the sum of the squares of the differences (in blue).

P;Obab'“tly Each Column represents _
ers‘ona an Industry Code Personal Remittances
A
N~ D - ) .
I 250 10% 0% | ... 5%
Account 1 2 3 n Predicted Actual Difference
1 $156 $0 $87 $25 $244 $200 $44
2 $200 $25 $0 $0 $200 $195 $5
4
/ $0 $134 | $35 $60 $230 $210 $20

Value of
transactions in
period
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LP Model?

Our model will determine the probability that a transaction from each
industry code is personal in such a manner which will minimize the sum
of the squared errors (between predicted personal remittances and
actual personal remittances).

* Letx; be such a probability that a transaction is personal for industry code j
* a;;—transaction amount for account / and industry code j

* b,—amount paid by personal remit for account i

* 2,0;;X;—the expected personal expenses for account i

* We'd like to choose x; such that 5 a;; x; matches b, for ALL i
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How to Linearize the Abs Function |

To dealing the abs function, we introduce auxiliary variablesy;

|Zi| =yl',i — 1,...,m.

Relax it to linear inequalities

—Vi SZl' Syl-,i = 1,...,m.

If the sum of y;s is minimized, the equality must hold

m
min z Vi This is an LP problem!
i=1

S.t. —y; < zaijxj —b; < y;, Vi
j _ySAX—b Sy,

0<x <1,V - 0<x<1
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How to Linearize the Abs Function Ili

Introduce auxiliary variables y’;and y”;

Zi = y’i _y"i'y’i = O,y"i = 0,l — 1,...,m.

Relax it to linear inequalities

min|z;| © miny’; +y";

If the sum of y;s is minimized, the equality must hold

m

min Z(Y'i +y)
i=1

stt. Ax—-b=y —y",

!/ "
O<x<1y =0,y =0. This is an LP problem!
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Mechanism for Information Market

» A place where information is aggregated via market for the primary
purpose of forecasting events.

 Why:
— Wisdom of the Crowds: Under the right conditions groups can be

remarkably intelligent and possibly smarter than the smartest person.

James Surowiecki

— Efficient Market Hypothesis: financial markets are “informationally
efficient”, prices reflect all known information

« Market for Betting the World Cup Winner

— Assume 5 teams have a chance to win the World Cup: Argentina,
Brazil, Italy, Germany and France
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Optimizations for the Market

» Double Auction: Let participants trade directly with one another

— Requires participants to find someone to take the other side of their
order (i.e.: the complement of the set of teams which they have
selected)

 Centralized Market Maker

— Introduce a market maker who will accept or reject orders received
from participants/traders

— Market maker may be exposed to some risk

 Problem: How should the market maker fill orders in such a manner that
he is not exposed to any financial risk?
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Central Organization of the Market

 Belief-based

« Central organizer will determine prices for each state based on his
beliefs of their likelihood

e This is similar to the manner in which fixed odds bookmakers
operate in the betting world

 Generally not self-funding
« Pari-mutuel
A self-funding technique popular in horseracing betting.
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Pari-mutual Market Model 1

« Example: Pari-mutual Horseracing Betting

Total Amount Bet = $6
[ ]

Outcome: Horse 2 wins

~

Winners earn S2 per bet plus stake back: Winners have stake
returned then divide the winnings among themselves
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More Abstract Market Model

* Market for World Cup Winner
— We’d like to have a standard payout of $1 per share if a participant has

a winning order.
« List of Combinatorial Orders

Order Price Quantity | Argentina | Brazil Italy Germany | France
Limit = Limit q
1 0.75 10 1 1 1
2 0.35 5 1
3 0.40 10 1 1 1
4 0.95 10 1 1 1 1
5 0.75 5 1 1

Market maker: Order fill - how many shares to sell for each order?
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More Abstract Market Model

Given m states that are mutually exclusive and exactly one of them will be
realized at the maturity.

An order is a bet on one or a combination of states

— (&p,aiy, ...,ay) - the entry value is 1 if the jth state is included in the
winning basket and O other wise.

with a price limit
— m; - the maximum price the participant is willing to pay for one share of
the order
and a share quantity limit
— @; : the maximum number of shares the participant is willing to buy.

A contract agreement so that on maturity it is worth a notional one dollar
per share if the order includes the winning state and worth 0 otherwise.
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Yinyu Ye

Pari-mutual Market Model 2

Order Price | Quanti | Argen | Bra | Italy | Germ | Franc

Let x; be the number of shares sell R i L B A
to order 1.
x1 0.75 10 1 1 1
The revenue collected for the sale: = 1o i
x3 0.40 10 1 1 1
Znixi 0.75x;+...+0.75x T BT R s
l
x5 0.75 5 1 1

The cost depends on which team wins:

— If jth team wins (for example, if Brazil wins in the example):

i

x1+X4+x5

We consider the worse case cost and profit

max;j—1_ m{ Z a;jx;}
:

., Stanford, MS&E211 Lecture Notes #2

=

max (Zﬂixi — maxj=1,___,m{z aijxi})
i i
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LP Pari-mutual Market Mechanism

max z T;X; — maxj{z a;;x;}
i

i
S.T. 0<x; <gq; Vi=1,...,n

L |

Collected /M TiX; — W ‘\
revenue i
Cost if state j is St/z ajjXi S W Vje S cost

realized i

This is an LP problem; later you will learn that
the optimal dual solution gives prices of each team
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World Cup Betting Results

Orders Filled
Order Price Quantity Filled Argentina Brazil Italy Germany France
Limit Limit

1 0.75 10 5 1 1
2 0.35 5 5 ]
3 0.40 10 5 ] ] ]
4 0.95 10 0 ] ] ]
5 0.75 5 5 ]

State Prices

Argentina Brazil Italy Germany France

Price 0.20 0.35 0.20 0.25 0.00
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Compact Coefficients

Order Price Quantity Argentina | Brazil Italy Germany France

Limit Limit q
AN VA \

1 /0.75\ / 10\ 1 1 1

2 0.35 5 1

3 0.40 10 1 ] ]

4 0.95 10 1 ] ] ]

5 \o.75 /| | 5] 1 1
VARV

Ll g A
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Model In Matrix Form

max Tl lx —w

s.t. ATx — 1w <0,
X < q,
X >0

1: vector of all ones
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Reinforcement Learning and Markov Decision Process

* Markov decision process provides a mathematical framework
for modeling sequential decision-making in situations where
outcomes are partly random and partly under the control of a
decision maker, and it is called Reinforcement Learning lately.

 MDPs are useful for studying a wide range of optimization
problems solved via dynamic programming, where it was
known at least as early as the 1950s (cf. Shapley 1953, Bellman
1957).

* Modern applications include dynamic planning, social
networking, and almost all other dynamic/sequential-decision-
making problems in Mathematical, Physical, Management,
Economics, and Social Sciences.

 MDP is characterized by States and Actions; and at each time
step, the process is in a state and the decision maker chooses
an action to optimize a long-term goal.



A Simple RL/MDP Problem: Maze Run

Each state i (in Square) is equipped with a set of actions A, , and they are colored
In red (status quo move), blue (shortcut move); and each of them incurs an
iImmediate cost ¢;. In this example, all actions have zero cost except the one
from the state 4 (trap) to the final termination state 5 (Exit state which goes
back to itself ). Each action is associated with transition probability node
(circle) with distribution vector P; to all states.
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Cost-to-Go values of a Policy

A policy is a set of actions taken in each State at anytime, and it defines an
expected Cost-to-Go value for each State (the overall present cost if starting
from this very state). Assuming there is no discount and the current policy
takes all-red actions, the corresponding expected cost-to-go state-values would
be given above, together with expected values for blue-actions.

Clearly, this policy is not optimal...
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Cost-to-Go values of another Policy

If the current policy is taking (red, red, red, blue, red) actions, the corresponding
expected cost-to-go state-values would be given above, together with expected
values for other actions. This policy is optimal.

An optimal policy is a policy that for each state there is no action-switch that
results in a lower cost.
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Cost-to-Go values of the Maze Run

yi: the expected overall present cost if
stating from State I.

State 5 is a trap @ ] e

: : -y e, T2 N ™,
State 6 is the exit state @ LT T NN

" < 173. :H&:TEiL“. _:-. .‘-‘:"""'-4. ",
EaCh Other State haS tWO Optlons .IEEEEEJEFEE:E'F;E"'-.:::::E===: ::::::-:-‘1--...::.'_. ""--_—:.‘:.\h""-':?'""‘ _____ e y
: B L e e, £ S VR T WY
Go directly to the next state or : i *“t—% =
1 w 2 > w 4 > P

a short-cut go to other states
with uncertainties

* The cost-to-go values of the optimal policy with discount factor Y
for this simple example should meet the following conditions
V6= 0t VY1, Ys=1+Vvye
y,=min{O+ yy., 0+y(0.2y.+0.8y},
y;=min{O+ yy,, 0+y(0.5y.+0.5y)}
y,=min{0+ yy; , 0+y(0.33y,+0.33y.+0.33y,)}
y,=min{0+ yy,, 0+y(0.25y,+0.25y,+0.25y.+0.25y,)}



LP Formulation of the Maze Run
Maxy,+Y,+Ys+ VY, + Y+ Y
s.t. yg <0+vyy,

Ye < 1+ vy,

Y, < 0+ yy:

Y, < 0+ y(0.2y.+yg)

y; < 0+ vy,

Y3 < 0+y(0.5y.+0.5y,)

Y, < 0+ yy;
y, < 0+ y(0.33y4+0.33y5+0.33y6)

y, < 0+vy,
y; < 0+ y(0.25y,+0.25y,+0.25y.+0.25y)




Cost-to-Go values and the LP formulation

* Ingeneral, let y €R™ represent the expected present cost-to-go
values of the m states, respectively, for a given policy. Then, the
cost-to-go vector of the optimal policy, with the discount factor
Y, by Bellman’s Principle is a Fixed Point:

Yi = min{Cj Ty p}y’ Je ALV,
jy=argmin{c, +yp;y, je A} Vi

e Such a fixed-point computation can be formulated as an LP

max Z Vi
i

st. ¥ <c+ypjy,VjE€A;Vi
* The maximization is trying to pushing up each yi to the highest
possible so that it equal to min-argument. When the optimal y
is found, one can then find the index of the original optimal
action/policy using argmin.



MDP/RL State/Action Environment
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immediate cost
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States/Actions of Tic-Tac-Toe Game
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Action Costs of Tic-Tac-Toe Game

Any action leading to win has cost -1
Any action leading to lose has cost 1
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