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Today’s Agenda

• Hidden LPs

– Supporting Vector Machine when strict separation 

may not be possible

– Air traffic landing time control

– Financial Big-Data analysis 

– Combinatorial auction for information market

– Reinforcement Learning/Markov Decision Process
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Supporting Vector Machine Revisited

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #2 3

𝑎𝑖
𝑇𝑥 + 𝑥0 ≥ 1

𝑏𝑗
𝑇𝑥 + 𝑥0 ≤ −1

ai

bj

minimize { σ𝑖max 1 − 𝑎𝑖
𝑇𝑥 − 𝑥0 , 0 + σ𝑗max(𝑏𝑗

𝑇𝑥 + 𝑥0 + 1, 0) }



Supporting Vector Machine Revisited
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𝑎𝑖
𝑇𝑥 + 𝑥0 ≥ 1

𝑏𝑗
𝑇𝑥 + 𝑥0 ≤ −1

ai

bj

𝑏𝑗
𝑇𝑥 + 𝑥0 ≤ −1 + 𝛿"𝑗 , 𝛿"𝑗 ≥ 0 𝑎𝑖

𝑇𝑥 + 𝑥0 ≥ 1 − 𝛿′𝑖 , 𝛿′𝑖 ≥ 0

minimize ෍

𝑖

𝛿′𝑖 +෍

𝑗

𝛿"𝑗



How to Linearize the Max Function

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #2 5

max𝑗=1,...,𝑚{෍

𝑖

𝑎𝑖𝑗𝑥𝑖} = 𝑤

Introduce an auxiliary variable w

෍

𝑖

𝑎𝑖𝑗𝑥𝑖 ≤ 𝑤, 𝑗 = 1, . . . , 𝑚

Relax it to linear inequalities 

If w is minimized, the equality must hold



Air Traffic Control
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Nolan, Fundamentals of Air Traffic Control

Boeing CNN

PBS
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Oakland Center

ETMS data 

courtesy of NASA 

Ames

Real data 

(playback mode)



Air Traffic Landing Control

• Air flight j, j = 1, ..., n, must arrive at the airport within the time interval 
[aj, bj ] in the order of 1, 2, ..., n. 

• The airport wants to find the actual arrival time for each air plane such that 
the narrowest metering time (inter-arrival time between two consecutive 
airplanes) is the greatest.

• Let: tj be the arrival time of flight j. Then
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maximize [ min𝑗=1,...,𝑛−1{ 𝑡𝑗+1 − 𝑡𝑗} ]

s.t. 𝑎𝑗 ≤ 𝑡𝑗 ≤ 𝑏𝑗 , 𝑗 = 1, . . . , 𝑛.

This is not an LP problem!



How to Linearize the Min Function
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min𝑗=1,...,𝑛−1{ 𝑡𝑗+1 − 𝑡𝑗} = Δ

Introduce an auxiliary variable Δ

Relax it to linear inequalities 

If Δ is maximized, the equality must hold

𝑡𝑗+1 − 𝑡𝑗 ≥ Δ, 𝑗 = 1, . . . , 𝑛 − 1.

max Δ
s.t. 𝑎𝑗 ≤ 𝑡𝑗 ≤ 𝑏𝑗 , 𝑗 = 1, . . . , 𝑛,

𝑡𝑗+1 − 𝑡𝑗 − Δ ≥ 0, 𝑗 = 1, . . . , 𝑛 − 1.

This is an LP problem!



Big Data: Business or Personal?

Build a model that will predict a probability for each credit card transaction 
indicating whether the transaction is business or personal related.

– There is no training data where particular transactions are identified as 
being personal, we used personal remittances as the best proxy

– On the transaction side, we focused on the industry code of each 
transaction as a key initial differentiator between transactions

– Developed a LP model to establish probabilities for each industry code 
that indicate the likelihood that dollars spent in that code will be personal 
spending.
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Transaction Types by Industrial Codes
Industry Code Description

995 CLUB - WAREHOUSE

25 DEPARTMENT STORE - MASS MERCHANDISER

728 GASOLINE/OIL COMPANY - NATIONAL DEALER

729 GASOLINE/OIL COMPANY - INDEPENDENT DEALER

429 SHOP - HOME IMPROVEMENT

415 DEPARTMENT STORE - FULL SERVICE

87 INTERNET TRAVEL

504 SHOP - ELECTRONIC GOODS

616 COMMUNICATION - CABLE & BROADCAST SERVICES

215 AUTO SERVICES - MOTOR RELATED SERVICES/DEALER

404 AUTO SERVICES - AUTO SALES & SERVICE

443 SHOP - SPORTING GOODS

457 SHOP - CHEMIST/PHARMACY

522 SHOP - FURNITURE

463 SHOP - JEWELRY

757 ENTERTAINMENT - TICKET AGENT - COMPANY

407 SHOP - CLOTHING - FAMILY

680 SHOP - COMPUTER HARDWARE

465 SHOP - LIQUOR STORE

400 AUTO SERVICES - VEHICLE ACCESSORIES

416 DEPARTMENT STORE - SPECIALITY

428 SHOP - HOME FURNISHINGS

414 SHOP - CLOTHING - WOMEN'S

793 TRAVEL - TOUR OPERATOR GENERAL

412 SHOP - CLOTHING - MEN'S & WOMEN'S

787 TRAVEL - NON - `AGENT RETAILER

447 SHOP - SHOES - MEN'S ONLY

427 SHOP - HARDWARE/DO IT YOURSELF

554 MAIL ORDER SELF IMPROVEMENT/BUSINESS SEMINARS

603 SERVICES - BEAUTY SHOPS/BEAUTICIAN
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Business Analytics 
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For each of the industry codes, the model will determine a probability which 

indicates the likelihood that a transaction was personal.  
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Model Example

For each of the industry codes, the model will determine a probability (in red) which 

indicates the likelihood that a transaction was personal.  The goal is to minimize 

the sum of the squares of the differences (in blue).
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LP Model?

• Let xj be such a probability that a transaction is personal for industry code j

• ai,j – transaction amount for account i and industry code j

• bi – amount paid by personal remit for account i

• ∑jai,j xj – the expected personal expenses for account i

• We’d like to choose xj such that ∑jai,j xj matches bi for ALL i

Min ෍

𝑖

|෍

𝑗

𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖 |

s.t. 0 ≤ 𝑥𝑗 ≤ 1, ∀𝑗.

Our model will determine the probability that a transaction from each 
industry code is personal in such a manner which will minimize the sum 
of the squared errors (between predicted personal remittances and 
actual personal remittances).
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How to Linearize the Abs Function I
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|𝑧𝑖| = 𝑦𝑖 , 𝑖 = 1, . . . , 𝑚.

−𝑦𝑖 ≤ 𝑧𝑖 ≤ 𝑦𝑖 , 𝑖 = 1, . . . , 𝑚.

To dealing the abs function, we introduce auxiliary variables yi

Relax it to linear inequalities 

If the sum of yis is minimized, the equality must hold

This is an LP problem!min ෍

𝑖=1

𝑚

𝑦𝑖

s.t. − 𝑦𝑖 ≤ ෍

𝑗

𝑎𝑖𝑗𝑥𝑗 − 𝑏𝑖 ≤ 𝑦𝑖 , ∀𝑖

0 ≤ 𝑥𝑗 ≤ 1, ∀𝑗.

−𝑦 ≤ 𝐴𝑥 − 𝑏 ≤ 𝑦,
0 ≤ 𝑥 ≤ 1



How to Linearize the Abs Function II
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𝑧𝑖 = 𝑦′𝑖 − 𝑦"𝑖 , 𝑦′𝑖 ≥ 0, 𝑦"𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚.

min | 𝑧𝑖| ⇔ min 𝑦 ′𝑖 + 𝑦"𝑖

Introduce auxiliary variables y’i and y”i

Relax it to linear inequalities 

If the sum of yis is minimized, the equality must hold

This is an LP problem!

min ෍

𝑖=1

𝑚

(𝑦′𝑖 + 𝑦"𝑖)

s.t. 𝐴𝑥 − 𝑏 = 𝑦′ − 𝑦",
0 ≤ 𝑥 ≤ 1, 𝑦′ ≥ 0, 𝑦" ≥ 0.



Mechanism for Information Market

• A place where information is aggregated via market for the primary 
purpose of forecasting events. 

• Why:

– Wisdom of the Crowds: Under the right conditions groups can be 
remarkably intelligent and possibly smarter than the smartest person.

James Surowiecki

– Efficient Market Hypothesis: financial markets are “informationally 
efficient”, prices reflect all known information

• Market for Betting the World Cup Winner

– Assume 5 teams have a chance to win the World Cup: Argentina, 
Brazil, Italy, Germany and France
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Optimizations for the Market
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• Double Auction: Let participants trade directly with one another

– Requires participants to find someone to take the other side of their 
order (i.e.: the complement of the set of teams which they have 
selected)

• Centralized Market Maker

– Introduce a market maker who will accept or reject orders received 
from participants/traders

– Market maker may be exposed to some risk 

• Problem: How should the market maker fill orders in such a manner that 
he is not exposed to any financial risk?



Central Organization of the Market
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• Belief-based

• Central organizer will determine prices for each state based on his 

beliefs of their likelihood

• This is similar to the manner in which fixed odds bookmakers 

operate in the betting world

• Generally not self-funding

• Pari-mutuel

• A self-funding technique popular in horseracing betting.



Pari-mutual Market Model 1
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• Example: Pari-mutual Horseracing Betting

Horse 1 Horse 2 Horse 3

Winners earn $2 per bet plus stake back: Winners have stake 
returned then divide the winnings among themselves

Bets

Total Amount Bet = $6

Outcome: Horse 2 wins



Market maker: Order fill - how many shares to sell for each order?

More Abstract Market Model
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• Market for World Cup Winner

– We’d like to have a standard payout of $1 per share if a participant has 

a winning order.

• List of Combinatorial Orders

Order Price 
Limit 

Quantity 
Limit q 

Argentina Brazil Italy Germany France

1 0.75 10 1 1 1

2 0.35 5 1

3 0.40 10 1 1 1

4 0.95 10 1 1 1 1

5 0.75 5 1 1



More Abstract Market Model
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• Given m states that are mutually exclusive and exactly one of them will be 
realized at the maturity. 

• An order is a bet on one or a combination of states

– (ai1,ai2,…,aim) : the entry value is 1 if the jth state is included in the 
winning basket and 0 other wise.

• with a price limit 

– πi : the maximum price the participant is willing to pay for one share of 
the order 

• and a share quantity limit 

– qi : the maximum number of shares the participant is willing to buy. 

• A contract agreement so that on maturity it is worth a notional one dollar 
per share if the order includes the winning state and worth 0 otherwise.  



Pari-mutual Market Model 2
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• Let xi be the number of shares sell 

to order i.

• The revenue collected for the sale:

• The cost depends on which team wins:

– If jth team wins (for example, if Brazil wins in the example):

• We consider the worse case cost and profit

෍

𝑖

𝜋𝑖𝑥𝑖

෍

𝑖

𝑎𝑖𝑗𝑥𝑖

max𝑗=1,...,𝑚{෍

𝑖

𝑎𝑖𝑗𝑥𝑖}

𝑥1 + 𝑥4 + 𝑥5

Order 
fill

Price 
Limit 



Quanti
ty 

Limit q 

Argen
tina

Bra
zil

Italy Germ
any

Franc
e

x1 0.75 10 1 1 1

x2 0.35 5 1

x3 0.40 10 1 1 1

x4 0.95 10 1 1 1 1

x5 0.75 5 1 1

max (෍

𝑖

𝜋𝑖𝑥𝑖 − max𝑗=1,...,𝑚{෍

𝑖

𝑎𝑖𝑗𝑥𝑖})

0.75𝑥1+. . . +0.75𝑥5



LP Pari-mutual Market Mechanism
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max ෍

𝑖

𝜋𝑖𝑥𝑖 −max𝑗{෍

𝑖

𝑎𝑖𝑗𝑥𝑖}

s.t. 0 ≤ 𝑥𝑖 ≤ 𝑞𝑖 ∀ 𝑖 = 1, . . . , 𝑛

This is an LP problem; later you will learn that

the optimal dual solution gives prices of each team 

max ෍

𝑖

𝜋𝑖𝑥𝑖 − 𝑤

s.t. ෍

𝑖

𝑎𝑖𝑗𝑥𝑖 ≤ 𝑤 ∀ 𝑗 ∈ 𝑆

0 ≤ 𝑥𝑖 ≤ 𝑞𝑖 ∀ 𝑖 ∈ 𝑁

Worst-case 
cost

Collected 
revenue

Cost if state j is 
realized



World Cup Betting Results

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #2 25

Orders Filled

Order Price 
Limit

Quantity 
Limit

Filled Argentina Brazil Italy Germany France

1 0.75 10 5 1 1 1

2 0.35 5 5 1

3 0.40 10 5 1 1 1

4 0.95 10 0 1 1 1 1

5 0.75 5 5 1 1

Argentina Brazil Italy Germany France

Price 0.20 0.35 0.20 0.25 0.00

State Prices



Compact Coefficients
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Order Price 
Limit 

Quantity 
Limit q 

Argentina Brazil Italy Germany France

1 0.75 10 1 1 1

2 0.35 5 1

3 0.40 10 1 1 1

4 0.95 10 1 1 1 1

5 0.75 5 1 1

π q A



Model in Matrix Form
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max 𝜋𝑇𝑥 − 𝑤

s.t. 𝐴𝑇𝑥 − 1𝑤 ≤ 0,
𝑥 ≤ 𝑞,

𝑥 ≥ 0
1: vector of all ones



Reinforcement Learning and Markov Decision Process
• Markov decision process provides a mathematical framework 

for modeling sequential decision-making in situations where 
outcomes are partly random and partly under the control of a 
decision maker, and it is called Reinforcement Learning lately.

• MDPs are useful for studying a wide range of optimization 
problems solved via dynamic programming, where it was 
known at least as early as the 1950s (cf. Shapley 1953, Bellman 
1957).

• Modern applications include dynamic planning, social 
networking, and almost all other dynamic/sequential-decision-
making problems in Mathematical, Physical, Management, 
Economics, and Social Sciences.

• MDP is characterized by States and Actions; and at each time 
step, the process is in a state and the decision maker chooses 
an action to optimize a long-term goal.
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A Simple RL/MDP Problem: Maze Run

Each state i (in Square) is equipped with a set of actions Ai , and they are colored 

in red (status quo move), blue (shortcut move); and each of them incurs an 

immediate cost cj. In this example, all actions have zero cost except the one 

from the state 4 (trap) to the final termination state 5 (Exit state which goes 

back to itself ). Each action is associated with transition probability node 

(circle) with distribution vector Pj to all states.
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Cost-to-Go values of a Policy

A policy is a set of actions taken in each State at anytime, and it defines an 

expected Cost-to-Go value for each State (the overall present cost if starting 

from this very state). Assuming there is no discount and the current policy 

takes all-red actions, the corresponding expected cost-to-go state-values would 

be given above, together with expected values for blue-actions.

Clearly, this policy is not optimal…  
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Cost-to-Go values of another Policy

If the current policy is taking (red, red, red, blue, red) actions, the corresponding 

expected cost-to-go state-values would be given above, together with expected 

values for other actions. This policy is optimal.

An optimal policy is a policy that for each state there is no action-switch that 

results in a lower cost.
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Cost-to-Go values of the Maze Run

• The cost-to-go values of the optimal policy with discount factor ϒ
for this simple example should meet the following conditions 

y6= 0+ γy1 ,     y5=1+ γy6

y4=min{0+ γy5 , 0+γ(0.2y5+0.8y6}, 

y3=min{0+ γy4 , 0+γ(0.5y5+0.5y6)}

y2=min{0+ γy3 , 0+γ(0.33y4+0.33y5+0.33y6)}

y1=min{0+ γy2, 0+γ(0.25y3+0.25y4+0.25y5+0.25y6)}
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• yi: the expected overall present cost if 

stating from State i.

• State 5 is a trap

• State 6 is the exit state

• Each other state has two options:

Go directly to the next state or 

a short-cut go to other states         

with uncertainties



LP Formulation of the Maze Run 
max y1 + y2 + y3 + y4 + y5 + y6

s.t. y6  ≤ 0+ γy1

y5 ≤ 1+ γy6     

y4 ≤ 0+ γy5

y4 ≤ 0+ γ(0.2y5+y6)

y3 ≤ 0+ γy4

y3 ≤ 0+γ(0.5y5+0.5y6) 

y2 ≤ 0+ γy3

y2 ≤ 0+ γ(0.33y4+0.33y5+0.33y6) 

y1 ≤ 0+ γy2

y1 ≤ 0+ γ(0.25y3+0.25y4+0.25y5+0.25y6) 
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Cost-to-Go values and the LP formulation
• In general, let y ∈ Rm represent the expected present cost-to-go 

values of the m states, respectively, for a given policy. Then, the 
cost-to-go vector of the optimal policy, with the discount factor 
γ, by Bellman’s Principle is a Fixed Point:

• Such a fixed-point computation can be formulated as an LP

• The maximization is trying to pushing up each yi to the highest 
possible so that it equal to min-argument. When the optimal y 
is found, one can then find the index of the original optimal 
action/policy using argmin. 

.} ,,min{arg

,} ,,min{

 

 

iAjypcj

iAjypcy

i

T

jji

i

T

jji

+=

+=




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max ෍

𝑖

𝑦𝑖

s.t. 𝑦𝑖 ≤ 𝑐𝑗 + 𝛾 𝑝𝑗
𝑇𝑦, ∀𝑗 ∈ 𝐴𝑖; ∀𝑖.



MDP/RL State/Action Environment 
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States/Actions of Tic-Tac-Toe Game
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Action Costs of Tic-Tac-Toe Game
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…

-1

Any action leading to win has cost -1

Any action leading to lose has cost 1 

1

-1


