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1st Day Questions

• My CA team: Aldo, Luc, Chunlin, Mingxi

• Websites:  Canvas 

https://canvas.stanford.edu/courses/142617

• 4 Homework assignments, 1 Take-Home Midterm, 1 team project 

– 40%*H + 30%*M+ 30%*P

– No difference on taking 3 or 4 units

• No formula for cutoff between A/B etc.

• The more fun we all have, the more A’s we will give out.  

• Textbook: Linear and Nonlinear Programming (LY 4-5th edition, posted in Canvas)

• This is 111X/211X; if never had calculus and linear algebra classes, take 111/211

• The software use will help:  Solvers in Matlab, R, Python or other public free 

software.  It is mostly a “PAPER AND PENCIL” class!

• Form a “diversified” study group

• Selected Friday’s problem sessions (will be taped)

• Students with OAE, extra two day for the exam
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Mathematical Optimization Model

• Often consider the common quantitative model of 
data/decision/management science & engineering:

• Maximize or Minimize  f(x) 

for all x ϵ some set X

• Decision variables x, Objective function  f(x), Constraint set X

• Applications in:

– Applied Science, Engineering, Economics, Finance, Medicine, 
Statistics, Business

– General Decision and Policy Making

• The famous Eighteenth Century Swiss mathematician and physicist 
Leonhard Euler (1707-1783) proclaimed that “…nothing at all takes place 
in the Universe in which some rule of maximum or minimum does not 
appear.”
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The Prototypical Optimization Problem

Max (or Max):                f(x)

s.t. : 

h1(x) = 0

...

hm(x) = 0

g1(x) < 0

...

gr(x) < 0

The Function could be: 

x1+2x2, x
2+2xy+2y2, xln(x)+ey, |x|+max{x,y}, etc

Linear Programming/Optimization: all functions are linear/affine
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Linear Programming

• Why do we study LP’s

– Not just because solving non-linear problems are difficult

– But because real-world problems are often formulated as 

linear equations and inequalities

• Either because they indeed are linear

• Or because it is unclear how to represent them and linear is an 

intuitive compromise

– A stepping stone for solving more complicated nonlinear 

optimization problems, which you would see later.
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LP, Nobel Prize,…
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… and National Medal of Science
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3 Main Categories in Optimization Covered in this 

Course

• Linear Optimization (Programming)

– Search Algorithms

– Simplex and Interior-Point Algorithms

• Unconstrained Nonlinear Optimization

– 1st order methods, gradient method

– 2nd order methods, Newton

• Constrained Nonlinear Optimization

– 1st order, gradient projection, sequential LP, etc.

– 2nd order, sequential Newton

– Lagrangian Relaxation, Primal-Dual, etc.

Other Classifications:

Quadratic, Convex, Integer, Mixed-Integer, Binary, etc.
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Issues in Optimization

• Problem Size

– Small – by hand

– Medium – by software

– Large –by decomposition

• Algorithm Complexity

– Convergence speed

– Local Convergence speed

• Insight more than just the solution?

– Solution structure properties

– Sensitivity analysis

– Alternate formulations
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What do you learn?

• Models – the Art: intuition and common sense

– How formulate real problems using quantitative models

• Theory – the Science: theorems, geometries and universal rules 

– Necessary and Sufficient Conditions that must be true for the 

optimality of different classes of problems.

• Algorithms – the Engineering: algorithms, methodologies and 

software tools

– How we apply the theory to robustly and efficiently solve 

problems and gain insight beyond the solution.

• Applications – AI, Machine Learning and Data Science

– Logistic Regression, SVM, the Wasserstain barycenter, 

Reinforced learning/MDP, Information market,…
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Art of Modeling, Formulation & Vocabulary

• Decision Variables  x ϵ Rn, yet to be decide

• Data/Coefficients, c ϵ Rn, that are given and fixed

• Objective inner product  f =cTx: Rn ⇥R

• Constraint Set  X ⊂ Rn

• Feasible solution  x ϵ X

• Optimal solution  x* ϵ X*

• Optimal value  z* = f (x*)
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LP Example 1: Resource Allocation/Production Management
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The Wyndor Glass Co. is a producer of high-quality glass products. It has three plants. Aluminum frames and 

hardware are made in Plant 1, wood frames are made in Plant 2, and Plant 3 is used to produce glass and assemble 

the products.  Wyndor produces two products which require the resources of the three plants as follows: 

 

Plant Aluminum Wood Resources 

1 1 0 100 

2 0 2 200 

3 1 1 150 

Unit Profit $1000 $2000  
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LP Example 2: Maximum Flow

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #1 13

A B

6

11

12

5

10

13

4

5

How much flow can travel from A to B, given that each of the directed 
connecting routes have flow limits/capacities?



Maximum Flow by Inspection

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #1 14

1

2

3

4

5

6

6

11

12

5

10

13

4

9

11

15 15

How to certify that 15 is maximal?



Cut in Maximum Flow I
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Cut in Maximum Flow II

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #1 16

A B

6

11

12

5

10

13

4

5

Cut value from Source site to Sink site=17



Cut in Maximum Flow III
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Data points classification application in Machine Learning and Data Science 
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LP Example 3: Transportation and Assignment

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #1 19

Retailer 1 Retailer 2 Retailer 3 Retailer 4 SUPPLY

Warehouse 1 12 (c11) 13 4 6 500   (s1)

Warehouse 2 6 4 10 11 700   (s2)

Warehouse 3 10 9 12 14 (c34) 800   (s3)

DEMAND 400 (d1) 900 (d2) 200 (d3) 500 (d4) 2000 (s4)
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Abstract Model

Inventory Planning: s is part of the decision vars.



Machine Learning: The Wassestein Barycenter Problem I
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The minimal transportation cost in Data Science is 

called the Wasserstein distance between a supply 

distribution and a demand distribution.

The Wasserstein Barycenter Problem is to find a 

distribution/points such that the sum of its Wasserstein 

distances to each of a set of distributions/points would 

be minimized

mins ∑k WD(s, dk) s.t. total mass constraint
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Machine Learning: The Wassestein Barycenter Problem II
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What is the best ``mean or consensus‘’ image from a set of images (pixel 

distributions)?

• Simple average

• Simple average after re-centering

• The Wasserstein Barycenter of the set of images (self re-center and rotation)



Machine Learning: The Wassestein Barycenter Problem III
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The simple avarage of n points is

s=(∑k dk )/n  or mins ∑k (|| s – dk||2)
2

The Wasserstein Barycenter Problem is to find a distribution/points such 

that the sum of its Wasserstein distances to each of a set of 

distributions/points would be minimized (self re-center and rotation).

Simple average after re-centering      Simple average               the Barycenter image



LP Example 4: Support Vector Machine
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{y: yTx + x0 = 0}

ai

bj 10 + xxaT
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j

x is the normal direction or slope vector and x0 is the intersect

Find a line to strictly separate greens and reds



LP Example 4: Is Strict Separation Possible?
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LP Example 4: Electric Vehicle Charging Schedule 

and Inventory Control

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #1 25

Period 1 Period 2 Period 3 Period 4 Period 5

Price ($) 1.25 (c1) 1.35 (c2) 1.25 (c3) 1.10 (c4) 1.05   (c5)

Demand (kw) 60 (d1) 110 (d2) 100 (d3) 40 (d4) 0   (d5)

Charging (kw) x1 x2 x3 x4 x5

Inventory (I0) I1 I2 I3 I4 I5
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LP Example 5: When Discharge is Allowed

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #1 26

Period 1 Period 2 Period 3 Period 4 Period 5

Price ($) 1.25 (c1) 1.35 (c2) 1.25 (c3) 1.10 (c4) 1.05   (c5)

Demand (kw) 60 (d1) 110 (d2) 100 (d3) 40 (d4) 0   (d5)

Charging (kw) x1 x2 x3 x4 x5

Inventory (I0) I1 I2 I3 I4 I5
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Nonlinear Optimization: Bird or Plane?
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Back to Linear Programming
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Abstract Linear Programming Model
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LP in Compact Matrix Form
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Some Facts of Linear Programming
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• Add a constant to the objective function does not change the 
optimality
• Scale the objective coefficients does not change the optimality

• Scale the right-hand-side coefficients does not change the optimality 

but the solution scaled accordingly

• Reorder the decision variables (together with their corresponding 

objective and constraint coefficients) does not change the optimality

• Reorder the constraints (together with their right-hand-side 

coefficients) does not change the optimality

•Multiply both sides of an equality constraint by a constant does not 

change the optimality

• Pre-multiply both sides of all equality constraints by a non-singular 

matrix does not change the optimality


