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15t Day Questions

Operations Research &Management Science

My CAteam: Aldo, Luc, Chunlin, Mingxi peiies et
« \Websites: Canvas ine:

https://canvas.stanford.edu/courses/142617 \

« 4 Homework assignments, 1 Take-Home Midterm, 1 team project ”Programmlng
— 40%*H + 30%*M+ 30%*P

— No difference on taking 3 or 4 units @ 5

No formula for cutoff between A/B etc.

* The more fun we all have, the more A’s we will give out.

« Textbook: Linear and Nonlinear Programming (LY 4-5™ edition, posted in Canvas)
« Thisis 111X/211X; if never had calculus and linear algebra classes, take 111/211

» The software use will help: Solvers in Matlab, R, Python or other public free
software. It is mostly a “PAPER AND PENCIL” class!

 Form a “diversified” study group

@ Springer

* Selected Friday’s problem sessions (will be taped)
« Students with OAE, extra two day for the exam
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Mathematical Optimization Model

Often consider the common quantitative model of
data/decision/management science & engineering:

« Maximize or Minimize f(x)
for all x e some set X

Decision variables x, Objective function f(x), Constraint set X

« Applications in:

— Applied Science, Engineering, Economics, Finance, Medicine,
Statistics, Business

— General Decision and Policy Making

The famous Eighteenth Century Swiss mathematician and physicist
L eonhard Euler (1707-1783) proclaimed that ““...nothing at all takes place

in the Unlverse in which some rule of maX|mum or minimum does not
appear.”



The Prototypical Optimization Problem

Max (or Max): f(x)
S.t.
h,(x) = 0
()= 0
9,(x) <0
gr(x.)“s 0

The Function could be:
X, +2X,, X24+2Xy+2y?, xIn(x)+eY, |x|+max{x,y}, etc

Linear Programming/Optimization: all functions are linear/affine
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Linear Programming

* Why do we study LP’s

— Not just because solving non-linear problems are difficult

— But because real-world problems are often formulated as
linear equations and inequalities
* Either because they indeed are linear
 Or because it is unclear how to represent them and linear is an
Intuitive compromise
— A stepping stone for solving more complicated nonlinear
optimization problems, which you would see later.



LP, Nobel Prize,...
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... and National Medal of Science

\

\
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3 Main Categories in Optimization Covered in this
Course

* Linear Optimization (Programming)
— Search Algorithms
— Simplex and Interior-Point Algorithms
* Unconstrained Nonlinear Optimization
— 15t order methods, gradient method
— 2nd order methods, Newton

« Constrained Nonlinear Optimization
— 18t order, gradient projection, sequential LP, etc.
— 2" order, sequential Newton
— Lagrangian Relaxation, Primal-Dual, etc.

Other Classifications:
Quadratic, Convex, Integer, Mixed-Integer, Binary, etc.
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Issues In Optimization

* Problem Size
— Small — by hand
— Medium — by software
— Large —by decomposition
« Algorithm Complexity
— Convergence speed
— Local Convergence speed
* Insight more than just the solution?
— Solution structure properties
— Sensitivity analysis
— Alternate formulations
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What do you learn?

« Models —the Art: intuition and common sense
— How formulate real problems using quantitative models
* Theory — the Science: theorems, geometries and universal rules

— Necessary and Sufficient Conditions that must be true for the
optimality of different classes of problems.

« Algorithms — the Engineering: algorithms, methodologies and
software tools

— How we apply the theory to robustly and efficiently solve
problems and gain insight beyond the solution.

« Applications — Al, Machine Learning and Data Science

— Logistic Regression, SVM, the Wasserstain barycenter,
Reinforced learning/MDP, Information market,...
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Art of Modeling, Formulation & Vocabulary

» Decision Variables x € R", yet to be decide

» Data/Coefficients, c € R", that are given and fixed
» Objective inner product f=c™x: R"»R

« Constraint Set X c R"

» Feasible solution x e X

« Optimal solution x" e X~

« Optimal value z* =f(x")
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LP Example 1: Resource Allocation/Production Management

The Wyndor Glass Co. is a producer of high-quality glass products. It has three plants. Aluminum frames and
hardware are made in Plant 1, wood frames are made in Plant 2, and Plant 3 is used to produce glass and assemble
the products. Wyndor produces two products which require the resources of the three plants as follows:

Plant Aluminum Wood Resources
1 1 0 100
2 0 2 200
3 1 1 150
Unit Profit $1000 $2000
X5 4

max X, +2X,
s.t. x, <1, '
2X, <2, N

\
X, + X, <1.5, 4_\
~

X1

>

X, X, =20 i
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LP Example 2: Maximum Flow

12

@

How much flow can travel from A to B, given that each of the directed
connecting routes have flow limits/capacities?
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Maximum Flow by Inspection

11

12

How to certify that 15 is maximal?
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Cut in Maximum Flow |

12

11

@

Cut value from Source site to Sink site=17
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Cut iIn Maximum Flow I

12

11

@

Cut value from Source site to Sink site=17
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Cut in Maximum Flow 111

Cut value from Source site to Sink site=15

Data points classification application in Machine Learning and Data Science
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~Yi=123456

Vi, j=12,3,4,5,6
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LP Example 3: Transportation and Assignment
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Retailer 1 Retailer 2 Retailer 3 Retailer 4 SUPPLY
Warehouse 1 |12 (c,,) 13 4 6 500 (s,)
Warehouse 2 |6 4 10 11 700 (s,)
Warehouse 3 |10 9 12 14 (c3,) 800 (s;)
DEMAND 400 (d,) 900 (d,) 200 (d.) 500 (d,) 2000 (s,)
3 4
X min > > ¢X;
i1 o1 Abstract Mo
4
st. > x; =5, Vi=123
j=1
3
> x;=d;, Vj=1234
i=1
X34 X; = 0, Vi, ]

del

Inventory Planning: s is part of the decision vars. i



Machine Learning: The Wassestein Barycenter Problem |

The minimal transportation cost in Data Science is N
. : WD(S’ d )_ min Z CijXij

called the Wasserstein distance between a supply -

distribution and a demand distribution. > _

The Wasserstein Barycenter Problem is to find a 5t Zx"f =sp Vi=l.

=1
distribution/points such that the sum of its Wasserstein N |
distances to each of a set of distributions/points would inf =djp V=1
be minimized 20, Vi

ming >, WD(s, d¥) s.t. total mass constraint

Three possible
3 3 T— 3 3 @8 demand distribution
A scenario of 4 cities
3 —l3 3 3 3 0o 1 1 2
C— 1 O 2 1
Constraints: {1 2 01
S;@| 05, 5 q 10

S,+S,+S;3+S,=9
S;@ | @S, (S1,52,53,54)>=0
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Machine Learning: The Wassestein Barycenter Problem ||

What is the best ""mean or consensus” image from a set of images (pixel

distributions)?
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» Simple average
» Simple average after re-centering

» The Wasserstein Barycenter of the set of images (self re-center and rotation)
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Machine Learning: The Wassestein Barycenter Problem Il

The simple avarage of n points Is
s=(2, d*)/n or ming 3, (Il s — d¥|[)?

The Wasserstein Barycenter Problem is to find a distribution/points such
that the sum of its Wasserstein distances to each of a set of
distributions/points would be minimized (self re-center and rotation).

- - - :

e : N -
T > -
b".‘. ~ d
. - \'

-~

..—\'

Simple average after re-centering  Simple average the Barycenter image
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LP Example 4: Support Vector Machine

a' X+Xx,>1

{y: yTx + x, = 0}

X Is the normal direction or slope vector and X, is the intersect
Find a line to strictly separate greens and reds
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LP Example 4: Is Strict Separation Possible?

a' X+ X, >0,Vi
bi X+ X, <0, V]

a' X+ X, =g, Vi

bi X+ X, < —¢&,V]

|

a.Tx+xO >1, Vi
b X+ X, <—1,V]

Are there x and X, such that the following
(open) inequalities are all satisfied

Are there x and x, such that the
following inequalities are all satisfied for

arbitrarily small «.

Divide x and X, by €., the problem can be
equivalently reformulated.

This is a special LP, called linear feasibility problem.
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LP Example 4: Electric Vehicle Charging Schedule
and Inventory Control
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Period 1 Period 2 Period 3 Period 4 Period 5
Price ($) 1.25 (c,) 1.35 (c,) 1.25 (c3) 1.10 (c,) 1.05 (cg)
Demand (kw) |60 (d,) 110 (d,) 100 (d,) 40 (d,) 0 (d)
Charging (kw) | x, X, X3 X, Xg
Inventory (l,) I, I, I I, I
5
min ) ¢
i1=1
S-t- I|—1+ Xl _dl — II, \v/ i :1,2,3,4,5
| +x <K, Vi=12345
X.>0,1.>0, V.
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LP Example 5: When Discharge is Allowed
Period 1 Period 2 Period 3 Period 4 Period 5
Price ($) 1.25 (c,) 1.35 (c,) 1.25 (c3) 1.10 (c,) 1.05 (cg)
Demand (kw) |60 (d,) 110 (d,) 100 (d,) 40 (d,) 0 (d)
Charging (kw) | x, X, X3 X, Xg
Inventory (l,) l, I, I I, I

st. 1, ,+x—d =1, Vi=12345

5
min ) ¢
=1

| +x <K,  Vi=12345
1.>0, Vi
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Nonlinear Optimization: Bird or Plane?

plane car bird cat deer dog frog horse ship truck

2 e
-EL”FH....
B P 2 R
Eﬁﬁ!'ﬂ..!ﬂ

o - ?M

Ewl..ﬂ?
TEFNNNET S

Yinyu Ye, Stanford, MS&E211 Lecture Notes #1




Neural Network Design for Prediction

Input #1 —

Input #2 —

\

Input #3

Input #4 —

Input #5 —

optimize  F(w; ;)
where w, ; is the weigh variable at laye I and edge |,

from a training set of pairs of inputs - outputs data so that when a new input
data come the system predict what output would be.
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Back to Linear Programming
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1-X, +2-X,

1-x +0-X%, <1,

0-X,+2-%X, <2,

1-X, +1-X, <1.5,
X, =0,Xx,=0.

max X, +2X, max
S.t. X, <1, S.t.
2X, <2, ‘
X + X, <1.5,
X =20,X, =20
max — cx+ c.X
SL aux *aex. < b
A Xo ¥ A X.= D,
A Xo T An XS Dy
X, 20, x,20.
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Abstract Linear Programming Model

max (MiN) c.x. + ¢, X, * -+ C.X.
S't' a11X1+ a12X2+"'+ alan{S’:’Z}bl
Xt AnXe Tt anX, (=21 D,

amlxl + amZXZ oot amnxn{ $,=,2 } bm
X, 20, x,free ,..., x, <0
Input:c,,...,c,,objective coef; b,,...,b_,constraint right - hand - side coef.

a;,1=1,..,m; J=1...,n,constraint left - hand -side table or matrix coef.

Output: x,,..., x. ,decision v ariables

yreany n’



LP in Compact Matrix Form

ai1 Q12 - Qqp by C1 X1
b2 &) X2

b, Cn Xn

AqMm1 9m2 -+ Amn
/

max(min) cT X

S.1. Ax {<,=>} D,
X {=,<}0 or free.
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Some Facts of Linear Programming

® Add a constant to the objective function does not change the
optimality

® Scale the objective coefficients does not change the optimality

® Scale the right-hand-side coefficients does not change the optimality
but the solution scaled accordingly

® Reorder the decision variables (together with their corresponding
objective and constraint coefficients) does not change the optimality

® Reorder the constraints (together with their right-hand-side
coefficients) does not change the optimality

® Multiply both sides of an equality constraint by a constant does not
change the optimality

® Pre-multiply both sides of all equality constraints by a non-singular
matrix does not change the optimality
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