Introduction to Optimization

Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

https://canvas.stanford.edu/courses/142617

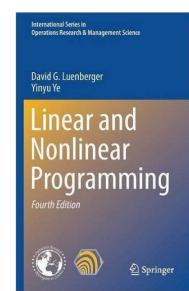
Read Chapter 1.1, 1.2, 2.1, 2.2, Appendices A, B&D in Text-Book (hard copies would be available in the Book Store)

1st Day Questions

- My CA team: Aldo, Luc, Chunlin, Mingxi
- Websites: Canvas

https://canvas.stanford.edu/courses/142617

- 4 Homework assignments, 1 Take-Home Midterm, 1 team project
 - -40%*H+30%*M+30%*P
 - No difference on taking 3 or 4 units
- No formula for cutoff between A/B etc.
- The more fun we all have, the more A's we will give out.
- Textbook: Linear and Nonlinear Programming (LY 4-5th edition, posted in Canvas)
- This is 111X/211X; if never had calculus and linear algebra classes, take 111/211
- The software use will help: Solvers in Matlab, R, Python or other public free software. It is mostly a "PAPER AND PENCIL" class!
- Form a "diversified" study group
- Selected Friday's problem sessions (will be taped)
- Students with OAE, extra two day for the exam



Mathematical Optimization Model

- Often consider the common quantitative model of data/decision/management science & engineering:
 - Maximize or Minimize f(x)for all $x \in$ some set X
- Decision variables x, Objective function f(x), Constraint set X
- Applications in:
 - Applied Science, Engineering, Economics, Finance, Medicine, Statistics, Business
 - General Decision and Policy Making
- The famous Eighteenth Century Swiss mathematician and physicist Leonhard Euler (1707-1783) proclaimed that "...nothing at all takes place in the Universe in which some rule of maximum or minimum does not appear."

The Prototypical Optimization Problem

 Max (or Max):
 f(x)

 s.t.
 :

 $h_1(x) = 0$...

 $m_m(x) = 0$ $g_1(x) \le 0$

 ...
 $g_r(x) \le 0$

The Function could be:

 $x_1+2x_2, x^2+2xy+2y^2, xln(x)+e^y, |x|+max\{x,y\}, etc$

Linear Programming/Optimization: all functions are linear/affine

Yinyu Ye, Stanford, MS&E211 Lecture Notes #1

Linear Programming

- Why do we study LP's
 - Not just because solving non-linear problems are difficult
 - But because real-world problems are often formulated as linear equations and inequalities
 - Either because they indeed are linear
 - Or because it is unclear how to represent them and linear is an intuitive compromise
 - A stepping stone for solving more complicated nonlinear optimization problems, which you would see later.

... and National Medal of Science

3 Main Categories in Optimization Covered in this Course

- Linear Optimization (Programming)
 - Search Algorithms
 - Simplex and Interior-Point Algorithms
- Unconstrained Nonlinear Optimization
 - 1st order methods, gradient method
 - 2nd order methods, Newton
- Constrained Nonlinear Optimization
 - 1st order, gradient projection, sequential LP, etc.
 - 2nd order, sequential Newton
 - Lagrangian Relaxation, Primal-Dual, etc.

Other Classifications:

Quadratic, Convex, Integer, Mixed-Integer, Binary, etc.

Issues in Optimization

• Problem Size

- Small by hand
- Medium by software
- Large –by decomposition

Algorithm Complexity

- Convergence speed
- Local Convergence speed

• Insight more than just the solution?

- Solution structure properties
- Sensitivity analysis
- Alternate formulations

What do you learn?

- Models the Art: intuition and common sense
 - How formulate real problems using quantitative models
- Theory the Science: theorems, geometries and universal rules
 - Necessary and Sufficient Conditions that must be true for the optimality of different classes of problems.
- Algorithms the Engineering: algorithms, methodologies and software tools
 - How we apply the theory to robustly and efficiently solve problems and gain insight beyond the solution.
- Applications AI, Machine Learning and Data Science
 - Logistic Regression, SVM, the Wasserstain barycenter, Reinforced learning/MDP, Information market,...

Art of Modeling, Formulation & Vocabulary

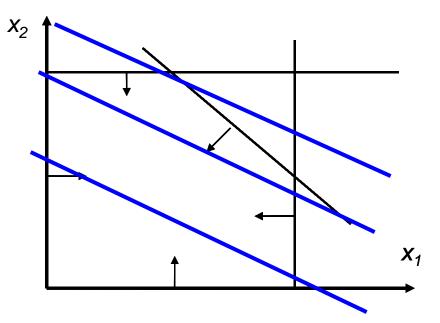
- Decision Variables $x \in \mathbb{R}^n$, yet to be decide
- Data/Coefficients, $c \in \mathbb{R}^n$, that are given and fixed
- Objective inner product $f = c^T x \colon \mathbb{R}^n \to \mathbb{R}$
- Constraint Set $X \subset \mathbb{R}^n$
- Feasible solution $x \in X$
- Optimal solution $x^* \in X^*$
- Optimal value $\mathbf{z}^* = f(\mathbf{x}^*)$

LP Example 1: Resource Allocation/Production Management

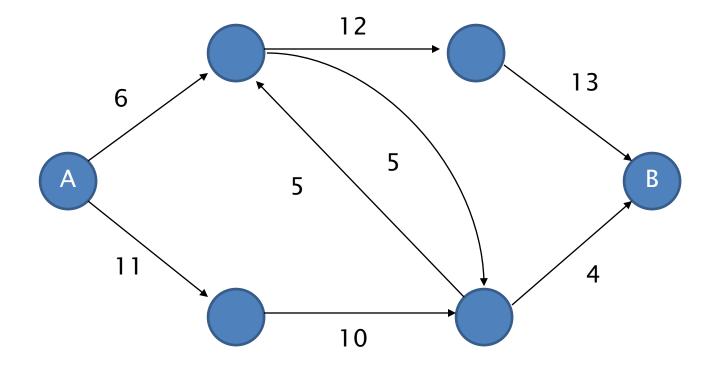
The Wyndor Glass Co. is a producer of high-quality glass products. It has three plants. Aluminum frames and hardware are made in Plant 1, wood frames are made in Plant 2, and Plant 3 is used to produce glass and assemble the products. Wyndor produces two products which require the resources of the three plants as follows:

Plant	Aluminum	Wood	Resources
1	1	0	100
2	0	2	200
3	1	1	150
Unit Profit	\$1000	\$2000	

$$\begin{array}{ll} \max & x_{1}+2x_{2} \\ \text{s.t.} & x_{1} \leq 1, \\ & 2x_{2} \leq 2, \\ & x_{1}+x_{2} \leq 1.5, \\ & x_{1}, x_{2} \geq 0 \end{array}$$

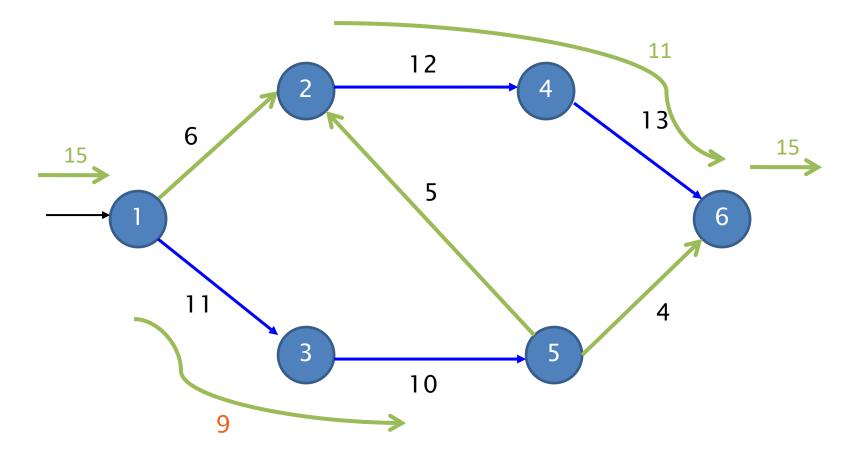


LP Example 2: Maximum Flow



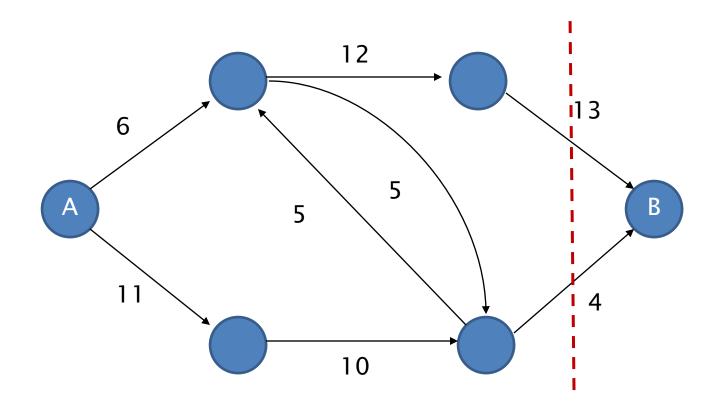
How much flow can travel from A to B, given that each of the directed connecting routes have flow limits/capacities?

Maximum Flow by Inspection



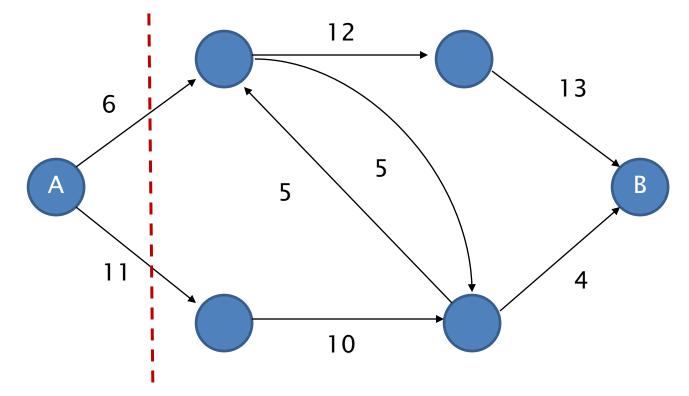
How to certify that 15 is maximal?

Cut in Maximum Flow I



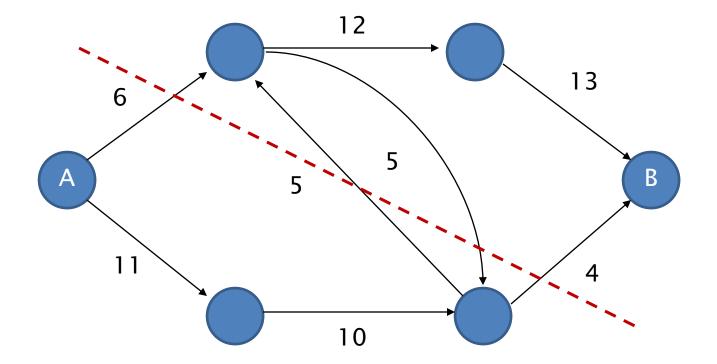
Cut value from Source site to Sink site=17

Cut in Maximum Flow II



Cut value from Source site to Sink site=17

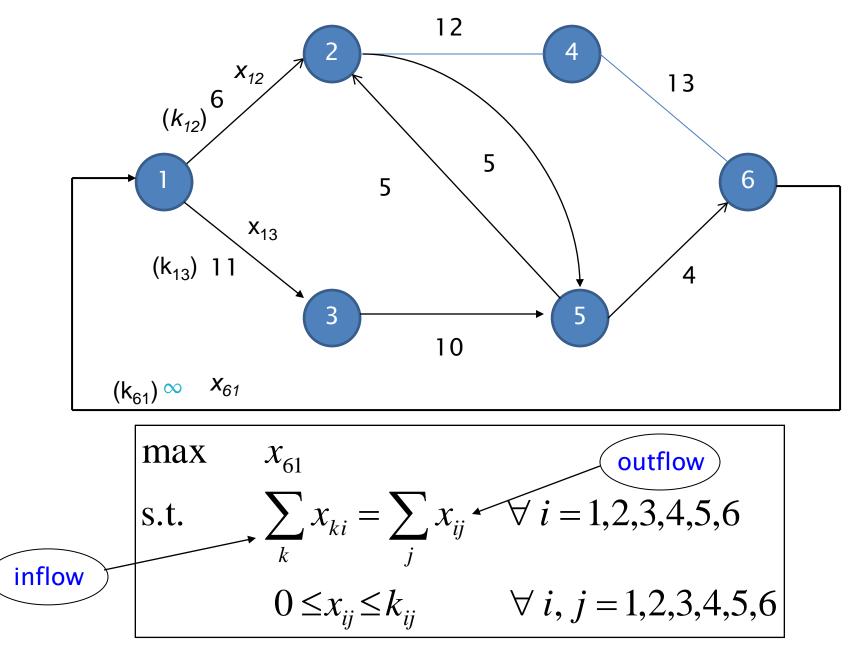
Cut in Maximum Flow III



Cut value from Source site to Sink site=15

Data points classification application in Machine Learning and Data Science

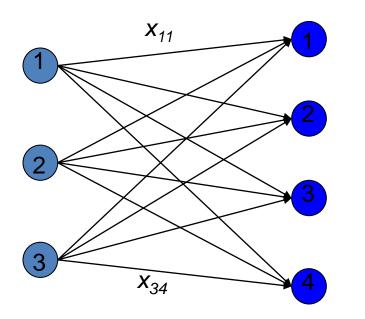
Yinyu Ye, Stanford, MS&E211 Lecture Notes #1



Yinyu Ye, Stanford, MS&E211 Lecture Notes #1

LP Example 3: Transportation and Assignment

	Retailer 1	Retailer 2	Retailer 3	Retailer 4	SUPPLY
Warehouse 1	12 (c ₁₁)	13	4	6	500 (s ₁)
Warehouse 2	6	4	10	11	700 (s ₂)
Warehouse 3	10	9	12	14 (c ₃₄)	800 (s ₃)
DEMAND	400 (d ₁)	900 (d ₂)	200 (d ₃)	500 (d ₄)	2000 (s ₄)



min
$$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij}$$
 Abstract Model
s.t.
$$\sum_{j=1}^{4} x_{ij} = s_i, \quad \forall i = 1, 2, 3$$
$$\sum_{i=1}^{3} x_{ij} = d_j, \quad \forall j = 1, 2, 3, 4$$
$$x_{ij} \ge 0, \qquad \forall i, j$$

Inventory Planning: s is part of the decision vars.

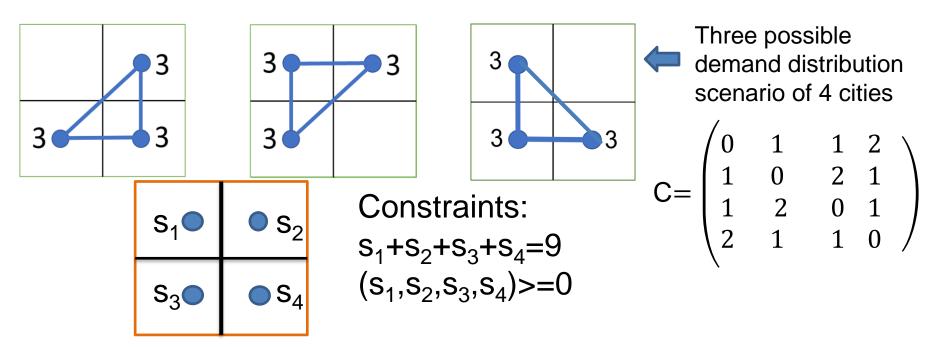
Machine Learning: The Wassestein Barycenter Problem I

The minimal transportation cost in Data Science is called the Wasserstein distance between a supply distribution and a demand distribution.

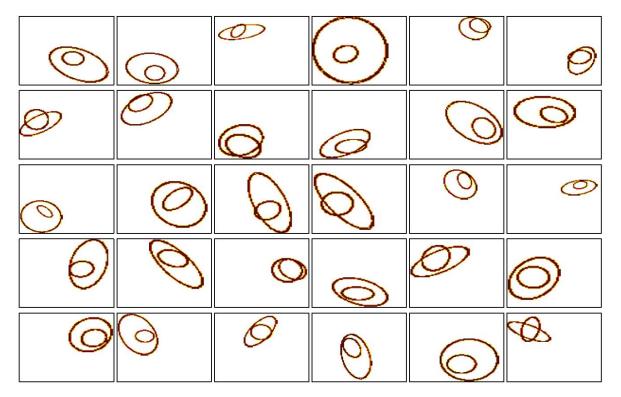
The **Wasserstein Barycenter Problem** is to find a distribution/points such that the sum of its Wasserstein distances to each of a set of distributions/points would be minimized

 $min_s \sum_k WD(s, d^k)$ s.t. total mass constraint

min $\sum c_{ij} x_{ij}$ $\sum_{\substack{j=1\\N\\N}}^{N} x_{ij} = s_i, \quad \forall \ i = 1, \dots, N$ s.t. $\sum_{i=1} x_{ij} = d_j, \ \forall j = 1, \dots, N$ $x_{ii} \ge 0, \quad \forall i, j$



Machine Learning: The Wassestein Barycenter Problem II



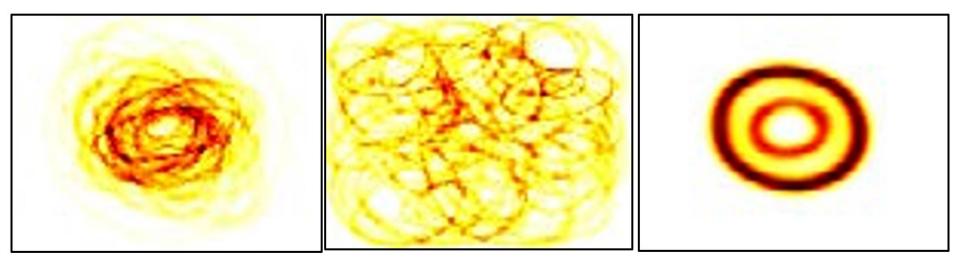
What is the best ``mean or consensus'' image from a set of images (pixel distributions)?

- Simple average
- Simple average after re-centering
- The Wasserstein Barycenter of the set of images (self re-center and rotation)

Machine Learning: The Wassestein Barycenter Problem III

The simple avarage of n points is $\mathbf{s} = (\sum_k \mathbf{d}^k)/n \text{ or min}_{\mathbf{s}} \sum_k (|| \mathbf{s} - \mathbf{d}^k||_2)^2$

The **Wasserstein Barycenter Problem** is to find a distribution/points such that the sum of its Wasserstein distances to each of a set of distributions/points would be minimized (self re-center and rotation).

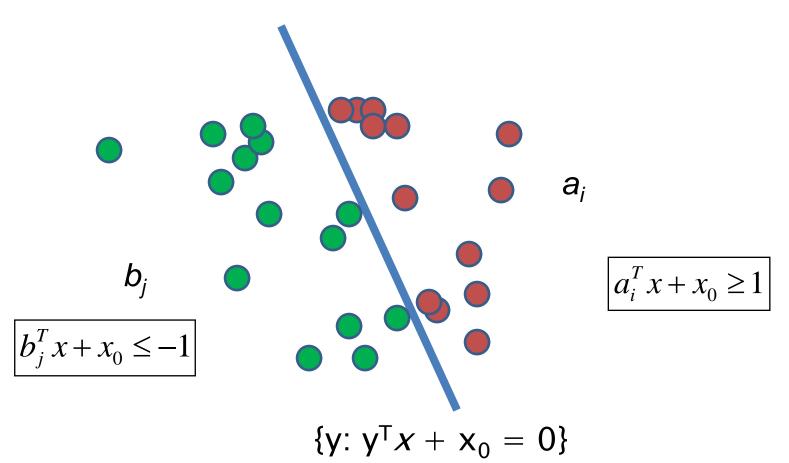


Simple average after re-centering

Simple average

the Barycenter image

LP Example 4: Support Vector Machine



x is the normal direction or slope vector and x_0 is the intersect Find a line to **strictly** separate greens and reds

LP Example 4: Is Strict Separation Possible?

$$a_i^T x + x_0 > 0, \forall i$$
$$b_j^T x + x_0 < 0, \forall j$$

Are there x and x_0 such that the following (open) inequalities are all satisfied

$$\begin{vmatrix} a_i^T x + x_0 \ge \varepsilon, \forall i \\ b_j^T x + x_0 \le -\varepsilon, \forall j \end{vmatrix}$$

Are there x and x_0 such that the following inequalities are all satisfied for arbitrarily small ε .

$$a_i^T x + x_0 \ge 1, \forall i$$
$$b_j^T x + x_0 \le -1, \forall j$$

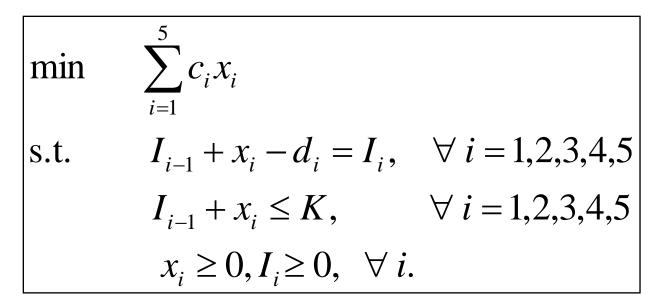
Divide x and x_0 by ε ., the problem can be equivalently reformulated.

This is a special LP, called linear feasibility problem.

Yinyu Ye, Stanford, MS&E211 Lecture Notes #1

LP Example 4: Electric Vehicle Charging Schedule and Inventory Control

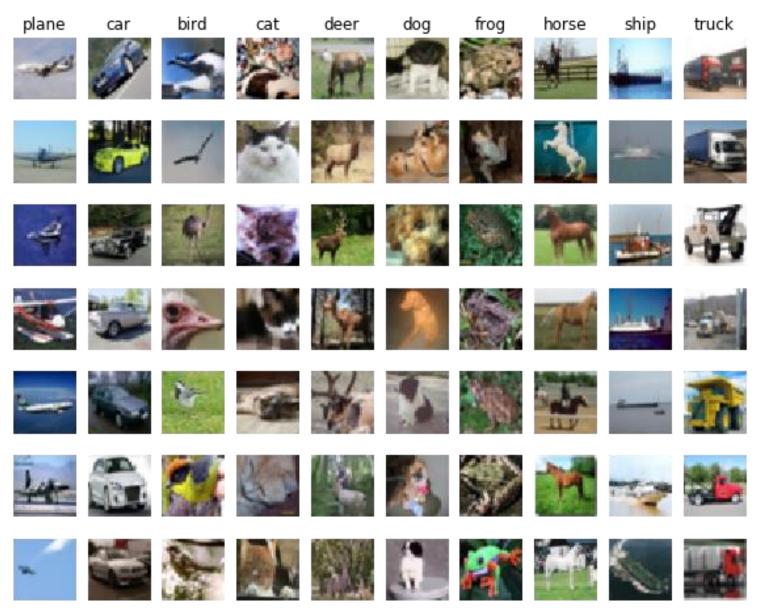
	Period 1	Period 2	Period 3	Period 4	Period 5
Price (\$)	1.25 (c ₁)	1.35 (c ₂)	1.25 (c ₃)	1.10 (c ₄)	1.05 (c ₅)
Demand (kw)	60 (d ₁)	110 (d ₂)	100 (d ₃)	40 (d ₄)	0 (d ₅)
Charging (kw)	x ₁	x ₂	x ₃	x ₄	х ₅
Inventory (I ₀)	I ₁	l ₂	l ₃	I ₄	I ₅



LP Example 5: When Discharge is Allowed

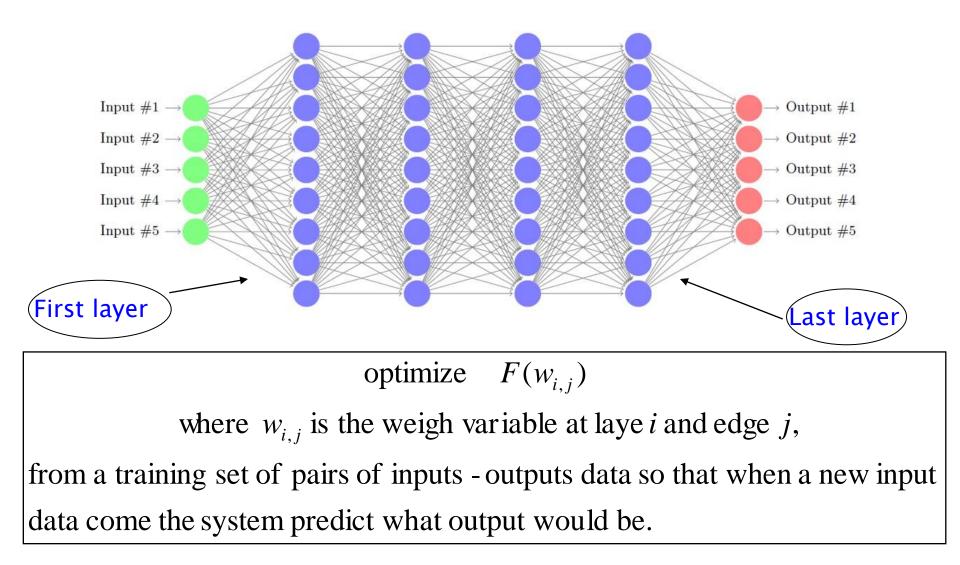
	Period 1	Period 2	Period 3	Period 4	Period 5
Price (\$)	1.25 (c ₁)	1.35 (c ₂)	1.25 (c ₃)	1.10 (c ₄)	1.05 (c ₅)
Demand (kw)	60 (d ₁)	110 (d ₂)	100 (d ₃)	40 (d ₄)	0 (d ₅)
Charging (kw)	x ₁	x ₂	x ₃	x ₄	x ₅
Inventory (I ₀)	I ₁	l ₂	l ₃	I ₄	I ₅

Nonlinear Optimization: Bird or Plane?

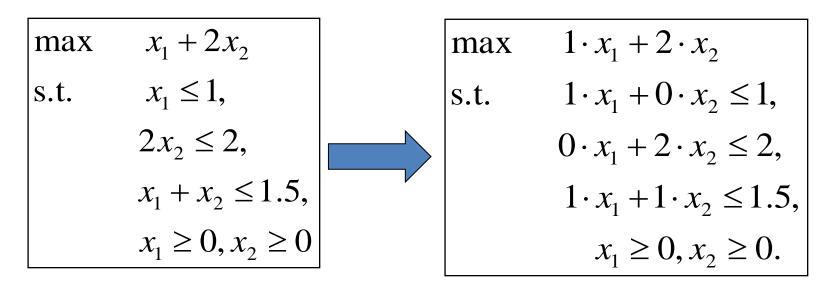


Yinyu Ye, Stanford, MS&E211 Lecture Notes #1

Neural Network Design for Prediction



Back to Linear Programming



Abstract Linear Programming Model

$$\max(\min) \begin{array}{l} c_{1}x_{1} + c_{2}x_{2} + \dots + c_{n}x_{n} \\ \text{s.t.} \\ a_{11}x_{1} + a_{12}x_{2} + \dots + a_{1n}x_{n} \{ \leq , = , \geq \} b_{1} \\ a_{21}x_{1} + a_{22}x_{2} + \dots + a_{2n}x_{n} \{ \leq , = , \geq \} b_{2} \\ \dots & \dots \end{array}$$

$$a_{m1} x_{1} + a_{m2} x_{2} + \dots + a_{mn} x_{n} \{ \leq , = , \geq \} b_{m}$$

$$x_{1} \geq 0, \ x_{2} \text{ free }, \ \dots, \ x_{n} \leq 0.$$

Input: $c_1,...,c_2$, objective coef.; $b_1,...,b_m$, constraint right - hand - side coef. $a_{ij}, i = 1,...,m; j = 1,...,n$, constraint left - hand - side table or matrix coef. Output: $x_1,...,x_n$, decision v ariables

LP in Compact Matrix Form



s.t.
$$A \ x \ \{\leq,=,\geq\} \ b$$
,
 $x \ \{\geq,\leq\} \ 0 \text{ or free.}$

Some Facts of Linear Programming

- Add a constant to the objective function does not change the optimality
- Scale the objective coefficients does not change the optimality
- Scale the right-hand-side coefficients does not change the optimality but the solution scaled accordingly
- Reorder the decision variables (together with their corresponding objective and constraint coefficients) does not change the optimality
- Reorder the constraints (together with their right-hand-side coefficients) does not change the optimality
- Multiply both sides of an equality constraint by a constant does not change the optimality
- Pre-multiply both sides of all equality constraints by a non-singular matrix does not change the optimality