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In this project, we consider the case where each data center i possess s number of observations with

same features of dimension p. A decision maker tries to perform estimation algorithms over data sets

(Xi = [xi,1; . . . ; xi,j ] ∈ Rs×p,yi = [yi,1; . . . , yi,j ] ∈ Rs×1) across each center i ∈ {1, . . . , b}.

For example, consider there are 2 data centers b = 2, and i ∈ {1, 2}, each of the data center possess

s = 2 number of observations with feature space p = 2, we have

X1 =

x1,1

x1,2

 =

0.75, 0.01

0.65, 0.80

 ,X2 =

x2,1

x2,2

 =

0.76, 0.02

0.63, 0.79

 (1)

y1 =

y1,1
y1,2

 =

1

0

 ,y2 =

y2,1
y2,2

 =

1

0

 (2)

The goal of the decision maker is to find predictor β ∈ Rp×1 over all data sets. In order to find β, we

consider the following optimization problem

b∑
i=1

s∑
j=1

f((xi,j , yi,j);β) (3)

When f((xi,j , yi,j);β) = 1
2 (Xiβ − yi)

T (Xiβ − yi), the problem becomes an unconstrained quadratic opti-

mization

min
β

b∑
i=1

1

2
(Xiβ − yi)

T (Xiβ − yi) =

b∑
i=1

s∑
j=1

1

2
(xi,jβ − yi,j)2 (4)

Question 1: Optimal solution under full access of data

If the decision maker could have access to share Xi across all data centers and have access to X =

[X1; . . . ; Xb], and y = [y1; . . . ; yb]. Write out the optimality condition and verify that the minimizor of (4)
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is given by

β∗ = (XTX)−1XTy

Hint: The original problem is equivalent as

min
β

1

2
βXTXβ − yTXβ

Question 2: Gradient Descend Method

Now suppose that each data center i does not want to provide Xi ∈ Rs×p to the decision maker,

because Xi may contain some sensitive information. Instead, the data center allows the decision maker to

run gradient descend method with the data set.

Question 2.1 In order to run gradient descent algorithm on across data centers i ∈ {1, . . . , b}, at the

kth iteration, the decision maker need to gather the gradient information at each center in order to update

βk+1 = βk − ρgk

where ρ is the step size and gk is the gradient evaluated at βk. Provide the expression of gk as a function

of Xi and yi.

Hint: gk =
∑b
i=1 gik, where gik ∈ Rp×1 only depends on Xi and yi, you may also find more hints in

question 2.

Question 2.2 Run gradient descent method on the data sets X and y provided in (1), (2), fix the

starting point β0 = [0; . . . ; 0], and the step size ρ to be constant with ρ = 1, report the Euclidean norm

‖β∗ − β̂‖2 =
√∑p

i=1(β∗i − β̂i)2 after 10, 20, 30 number of iterations respectively. Does the algorithm

converge? For what range of step size does gradient descent algorithm converge?

Question 3: Primal Distributed ADMM Method

We could also formulate the problem as constrained optimization by introducing local estimators βi to

each data centers.

min
βi,β

b∑
i=1

1

2
(Xiβi − yi)

T (Xiβi − yi) (5)

s.t.βi − β = 0 ∀ i (6)

Question 3.1 Write down the augmented Lagragian of problem (5).

The algorithm of primal consensus ADMM is given as follows The algorithm of primal consensus ADMM

is as follows.
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Algorithm 1 Primal Consensus ADMM

Initialization: t = 0, step size ρ ∈ R+ βt ∈ Rp, λt,i ∈ Rp, βt,i ∈ Rp for all i ∈ {1, . . . , b}, and stopping

rule τ
while t ≤ τ do

Each data center i updates βt+1,iin parallel by
βt+1,i = argminβi∈Rp

∑
i

∑
j f((xi,j , yi,j);βi) + λTt,i(βi − βt) + ρ

2 (βi − βt)
T (βi − βt)

Decision maker updates
βt+1 = 1

b

∑
j βt+1,i + 1

bρ

∑
i λt,i, λt+1,i = λt,i + ρ(βt+1,i − βt+1)

end
Output: βτ as global estimator

Question 3.2 Run primal consensus ADMM on the data sets X and y provided in (1), (2), fix the

starting point β0 = [0; . . . ; 0], and the step size ρ to be constant with ρ = 1, report the Euclidean norm

‖β∗ − β̂‖2 =
√∑p

i=1(β∗i − β̂i)2 after 10, 20, 30 number of iterations respectively. Compare your algorithm

with gradient descent under ρ = 1.

Question 5: Benefit of Data Exchange

Now suppose we can swap one entry of the observations. Considering the following data sets

X̂1 =

x1,1

x2,1

 =

0.75, 0.01

0.76, 0.02

 , X̂2 =

x1,2

x2,2

 =

0.65, 0.80

0.63, 0.79

 (7)

ŷ1 =

y1,1
y2,1

 =

1

1

 , ŷ2 =

y1,2
y2,2

 =

0

0

 (8)

Under this scenario, we exchange the observation x1,2 at data center 1 and x2,1 at data center 2. Note

this operation would not influence the optimal solution of β∗ (why?). Run primal consensus ADMM on

the data sets X̂ and ŷ provided in (7), (8), fix the starting point β0 = [0; . . . ; 0], and the step size ρ to be

constant with ρ = 1, report the Euclidean norm ‖β∗ − β̂‖2 =
√∑p

i=1(β∗i − β̂i)2 after 10, 20, 30 number of

iterations respectively. Compare your algorithm with results you had in Question 4.2.

Question 6 (Bonus) : Data sets of UCI Machine Learning Repository

Now consider the real world data sets. The following data set on YearPredictionMSD1 tries to predict

of the release year of a song from audio features. Songs are mostly western, commercial tracks ranging

from 1922 to 2011, with a peak in the year 2000s. We focus on the trainning data with 463, 715 number

of observations and feature space p = 90. Now suppose the data are provided by four audio/entertainment

companies, company 1 possesses observations 1 to 115, 929, company 2 possesses observations of 115, 930 to

1https://archive.ics.uci.edu/ml/datasets/YearPredictionMSD
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231, 858, company 3 possesses observations of 231, 859 to 347, 787 and company 4 possesses observations of

347, 788 to 463, 715.

The four companies do not want to directly share Xi with you, instead, all of the four companies allows

you to run either gradient descend method or ADMM method on the data sets. Compare the gradient

descend algorithm, primal consensus ADMM algorithm.

In order to apply data-exchange, consider the following algorithm. Introducing the auxiliary ζ, we have

the primal problem could also be formulated as

min
ζ

1

2
ζT ζ (9)

s.t.Xβ − y = ζ (10)

And let t be the dual variables with respect to the primal constraints Xβ − y = ζ. Taking the dual with

respect to problem (9). Consider the following randomized cyclic updating method on Dual-Randomized-

Cyclic ADMM (DRC-ADMM). Let L(t,β) be the augmented Lagrangian, at each iteration k, do the following

• random permute [1, . . . , n] to be σ. For example with n = 4, one random permutation may be

σ = [4, 1, 2, 3].

• Given number of data center b, separates the data according to σ. For example, with n = 4, and

random permutation σ = [4, 1, 2, 3], b = 2, t1,σ = [t4, t1], and t2,σ = [t2, t3].

• Cyclic updating

tk+1
1,σ = argmint1,σL(t1,σ, t

k
2,σ,β

k)

tk+1
2,σ = argmint2,σL(tk+1

1,σ , t2,σ,β
k)

βk+1 = βk − ρXT tk+1

Run the Dual-Randomized-Cyclic ADMM (DRC-ADMM) on the data sets on X and y for UCI ML

data, fix the starting point β0 = [0; . . . ; 0], and the step size ρ to be constant with ρ = 1, report the Euclidean

norm ‖β∗ − β̂‖2 =
√∑p

i=1(β∗i − β̂i)2 after 10, 20, 30 number of iterations respectively. Comparing with

algorithms without data exchange, what do you find? Now what if you can only permute 5% of the data?
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