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Markov Decision Processes (MDPs) provide a mathematical framework for modeling sequential decision-

making in situations where outcomes are partly random and partly under the control of a decision maker.

MDPs are useful for studying a wide range of optimization problems solved via Dynamic Programming (DP),

where it was known at least as early as the 1950s (cf. Shapley 1953, Bellman 1957). Modern applications in-

clude dynamic planning, reinforcement learning, social networking, and almost all other dynamic/sequential

decision game strategy making problems in Mathematical, Physical, Management and Social Sciences.

As talked in class, the MDP problem with m states and total n actions can be formulated as a standard

form linear program with m equality constraints and n variables:

minx

∑
j∈A1

cjx1j+ ... +
∑

j∈Am
cjxmj

s.t.
∑

j∈A1
(e1 − γpj|1)x1j+ ... +

∑
j∈Am

(em − γpj|m)xmj = e,

... xij ... ≥ 0, ∀i and j,

(1)

where Ai represents the set of all actions available in state i, pj|i is the state transition probabilities from

state i to all states and cj is the immediate cost when action j is taken, and 0 < γ < 1 is the discount factor.

For simplicity, we assume the cost is only dependent on the action but not on the state. Also, e ∈ Rm is

the vector of ones, and ei is the unit vector with 1 at the i-th position and zeros everywhere else. Variable

xij , j ∈ Ai, is the state-action frequency or flux, or the expected present value of the number of times in

which the process visits state i and takes state-action j ∈ Ai. Thus, solving the problem entails choosing a

state-action frequencies/fluxes that minimize the expected present value sum of total costs. The dual of the
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LP is

maximizey eTy =
∑m

i=1 yi

subject to y1 − γpT
j|1y ≤ cj , j ∈ A1

...

yi − γpT
j|iy ≤ cj , j ∈ Ai

...

ym − γpT
j|my ≤ cj , j ∈ Am.

(2)

where yi represents the cost-to-go value in state i.

Question 1: Explain why that in (1) the basic variables of every basic feasible solution have exactly

one variable from each state i. You are not required to mathematically prove this statement and only need

to intuitively interpret this statement.

In the VI method, if starting with any vector y0 ≥ y∗ and assuming y1 ≤ y0, then the following

entry-wise monotone property holds:

y∗ ≤ yk+1 ≤ yk, ∀k.

This property has been used in a recent paper (see [SWWY17]) on the VI method using samples.

Question 2: Rather than go through all state values in each iteration, we modify the VI method, call

it RamdomVI: In the k-th iteration, randomly select a subset of states Bk and do

yk+1
i = min

j∈Ai

{cj + γpT
j|iy

k}, ∀i ∈ Bk. (3)

In RandomVI, we only update a subset of state values at random in each iteration.

What can you tell the convergence of the RandomVI method? Does it make a difference with the

classical VI method? How does the sample size affect the performance? Simulate computational experiments

to verify your claims.

Suppose we build an empirical distribution for each action being selected as the winning action in the

final policy: the probability of action j is the past frequency of action j is being selected as the arg min

in the previous iterations, e.g., the Bayes update where we start with a uniform distribution p̃0. Redo the

computational experiments by randomly selecting Ai using the empirical distribution.

Question 3: Here is another modification, called CyclicVI: In the k-th iteration do

• Initialize ỹk = yk.

• For i = 1 to m

ỹki = min
j∈Ai

{cj + γpT
j|iỹ

k} (4)
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• yk+1 = ỹk.

In the CyclicVI method, as soon as a state value is updated, we use it to update the rest of state values.

What can you tell the convergence of the CyclicVI method? Does it make a difference with other VI

methods? Use simulated computational experiments to verify your claims.

Question 4: In the CyclicVI method, rather than with the fixed cycle order from 1 to m, we follow

a random permutation order, or sample without replacement to update the state values. More precisely, in

the kth iteration do

0. Initialize ỹk = yk and Bk = {1, 2, ...,m}

1. – Randomly select i ∈ Bk

–

ỹki = min
j∈Ai

{cj + γpT
j|iỹ

k} (5)

– remove i from Bk and return to Step 1.

3. yk+1 = ỹk.

We call it the randomly permuted CyclicVI or RPCyclicVI in short.

What can you tell the convergence of the RPCyclicVI method? How does it compare with other VI

methods? Simulate computational experiments to verify your claims.

Question 5(Optional): How does the structure of the matrix P affect the convergence? Consider

the following choices of P and discuss what you find:

1. Deterministic MDP. Each state deterministically transitions to another state under a specific action.

That is, the vector pj|i is a one-hot vector for all i, j.

2. For a given action j, the transition probabilities to the next state are the same and is not dependent

on the current state. That is, the vector pj|i is the same for all i.

3. General Case. The transition probabilities depend on both state and action.

In the experiments, clearly state how you generate the transition probability matrices.
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