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1 Introduction

Sensor Network Localization (SNL), also closely related to Data Dimensionality Reduction, Phase Retrieval,

Molecular Confirmation, Graph Realization, is a major topic in Data Science and Machine Learning. The

SNL problem is: Given possible anchors ak ∈ Rd, distance information dij , (i, j) ∈ Nx, and d̂kj , (k, j) ∈ Na,

find xi ∈ Rd for all i such that

‖xi − xj‖2 = d2ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 = d̂2kj , ∀ (k, j) ∈ Na,
(1)

where (i, j) ∈ Nx ((k, j) ∈ Na) connects points xi and xj (ak and xj) with an edge whose Euclidean length

is dij (d̂kj). Nx and Na denote the pairs of points whose distances are known.

We established in class an SOCP relaxation for solving (1): Find vectors xi to solve

minxi

∑
i 0

Txi

s.t. ‖xi − xj‖2 ≤ d2ij , ∀ (i, j) ∈ Nx, i < j,

‖ak − xj‖2 ≤ d̂2kj , ∀ (k, j) ∈ Na.

(2)

We also established in class an SDP relaxation for solving (1): Find a symmetric matrix Z ∈ Sd+n such that

minZ 0 • Z

s.t. Z1:d,1:d = I,

(0; ei − ej)(0; ei − ej)
T • Z = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)T • Z = d̂2kj , ∀ k, j ∈ Na,

Z � 0.

(3)

Note that Z1:d,1:d = I ∈ Sd can be realized through d(d + 1)/2 linear equations. For example, if d = 2, we

have Z11 = 1, Z22 = 1, and Z12 = 0.
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There is a simple nonlinear least squares approach to solve (1):

minxi

∑
(i,j)∈Nx

(
‖xi − xj‖2 − d2ij

)2
+
∑

(k,j)∈Na

(
‖ak − xj‖2 − d2kj

)2
(4)

which is an unconstrained nonlinear minimization problem.

Question 1: Run some randomly generated problems in 2D with 3 or more anchors, respectively, and

ten sensors to compare the three approaches. You may set up a threshold radius such that the distance

between two points is known when the distance is below the threshold.

2 SNL with Noisy Data

In practical problems, there is often noise in the distance information. To deal with possible noise, the SDP

relaxation approach (3) can be modified to minimize the L1 norm of the errors:

minZ,δ′,δ′′,δ̂′,δ̂′′
∑

(i,j)∈Nx
(δ′ij + δ′′ij) +

∑
(k,j)∈Na

(δ̂′kj + δ̂′′kj)

s.t. Z1:d,1:d = I,

(0; ei − ej)(0; ei − ej)
T • Z + δ′ij − δ′′ij = d2ij , ∀ i, j ∈ Nx, i < j,

(ak;−ej)(ak;−ej)T • Z + δ̂′kj − δ̂′′kj = d̂2kj , ∀ k, j ∈ Na,

Z � 0

δ′, δ′′, δ̂′, δ̂′′ ≥ 0.

(5)

The SDP solution from the relaxation

Z̄ =

 I X̄

X̄T Ȳ


often may not be rank d so that X̄ ∈ Rd×n cannot be the best possible localization of the n sensors.

Question 2: Generate some random problems with slightly noisy sensor data. Use the SDP solution

X̄ = [x̄1, x̄2, ...., x̄n] of (5) as the initial solution for solving model (4) by the Steepest Descent Method for

a number steps. Are you able to estimate the position of the sensors well? Compare this to using Steepest

Descent on (4) with random initialization.

3 Steepest Descent and Projection Method

Unfortunately, the current available SDP solvers are still too time consuming for solving large-scale SDP

problems. In this part, you are asked to implement one of the first-order SDP methods described in class to

solve the SDP relaxation problem for SNL.
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The SNL problem can be casted as

min f(X) =
1

2
‖AX − b‖2 s.t. X � 0,

where

AX =


A1 •X

...

Am •X

 , ATy =
∑
i=1

yiAi, and ∇f(X) = AT (AX − b).

The SDM projection method described in class is to compute

X̂k+1 = Xk − 1

β
∇f(Xk),

then project X̂k+1 back to the cone. One way for the projection is to use the eigendecomposition X̂k+1 =

V ΛV T , where V are the eigenvectors and Λ the eigenvalues, and let

Xk+1 = ProjK(X̂k+1) = V max{0, Λ}V T .

In Matlab, you can apply eig function to find the corresponding matrices Λ and V . The drawback is that

the eigendecomposition may be costly in each iteration.

Question 3: Try just computing the few largest eigenpairs, say six largest λi with corresponding

eigenvectors vi and let:

Xk+1 =

6∑
i=1

max{0, λi}vivTi .

Typically, a few extreme eigenvalues of a symmetric matrix can be computed more efficiently. Here, we

assume that the problem has only one anchor at the origin. One can find the true position later using two

more anchor information.

4 ADMM Method for Sensor Network Localization

Another speed-up may be using ADMM approach. One can reformulate the nonlinear least squares model

(4) as

min
∑

(i,j)∈Nx

[
(xi − xj)

T (yi − yj)− d2ij
]2

+
∑

(k,j)∈Na

[
(ak − xj)

T (ak − yj)− d2kj
]2

s.t. xj − yj = 0, ∀j.
(6)

For fixed y’s, the objective function is a linear square function of x’s; and for fixed x’s, the objective function

is a linear square function of y’s.

Question 4(Optional):
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• Develop an ADMM method to minimize the objective function by treating xs and ys as two blocks of

variables so that each block optimization problem within any ADMM iteration is a convex quadratic

minimization problem.
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