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1. Start with a BFS basis B with  xB= (AB)-1 b(≥0), xN=0; 
compute shadow (or dual) price vector:

yT = cT
B(AB)-1 or solve yT AB = cT

B

2. Calculate the reduced cost vector for non-basic variables 
rN=cT

N-yTAN , ( rB =0 )

If the reduced cost for every non-basic variable is nonnegative, then STOP:
declare OPTIMAL

2

Recall the Simplex Method for Standard Equality Form

3. Dantzig Rule: select the most negative reduced cost variable, say xe or 
column (AB)-1 Ae, as the entering variable (column), and using the minimum 
ratio to decide the outgoing variable (row). If the min-ratio is infinity, then
STOP: declare UNBOUNDED

4.Update new basis (B) matrix inverse (AB)-1 ; or perform the pivot 
operations to update the tableau. 

Go to Step 1
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0         

,    s.t.

   min





x

bAx

xcT



When a BFS with basis B, xB , is optimal?

where the shadow-price/multiplier vector yT=cB
T(AB)−1. 

Moreover        OV = cTx = cB
TxB = cB

T(AB)−1b = yTb
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Summary of BFS Optimality Test/Condition

xB =(AB)−1b ≥0, xN =0

rT = cT- yTA ≥  0

The existence of such a shadow-price/multiplier vector y is 

served as a certificate of the optimality of corner feasible 

solution x. Such a y is also called optimal shadow-price vector.

Dos this optimal test/condition apply to any feasible solution x?

0         

,    s.t.

   min





x

bAx

xcT



This is a system of linear inequalities and equations. Thus it is 

easy to verify whether or not a pair (x, y) is optimal by a 

computer.
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The Optimality Condition

Theorem A feasible solution x in the LP standard 
equality form is optimal if and only if there is an 
optimal shadow-price vector y such that: 

⎩

⎧
⎪

⎨
(x, y) ∈ (Rn , Rm ) :

⎪

cT x − bT y = 0

Ax              = b, x ≥ 0

AT y            ≤  c

⎫

⎪⎬
,

⎪
⎪

⎭

0         

,    s.t.

   min





x

bAx

xcT



Since rTx = ∑n
j=1 rjxj and all entries are nonnegative,  the condition 

implies that rjxj =0 for all j; that is, for each j, at least one of rj and xj 

is 0. We often call this a complementarity property: two 

nonnegative vectors r and x are complementary to each other.
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An Equivalent Optimality Condition

A feasible solution x in the LP standard equality 
form is optimal if and only if there are vectors 
(y, r) such that: 

⎩

⎧
⎪

⎨
(x, y, r) ∈ (Rn , Rm, Rn):

⎪

rTx = 0

Ax              = b, x ≥ 0

AT y  + r      = c, r ≥ 0

⎫

⎪⎬
,

⎪
⎪

⎭

0         

,    s.t.

   min





x

bAx

xcT
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Physical Explanation of Complementarity Condition

Complementarity or Complementary-Slackness Phenomenon typically 

occurs when optimization with inequality constraints.

Consider     min   f(x),    s.t. x ≥ 0

Two possible Scenarios:

x*= 0 & f’(0) ≥ 0                   or                       x*>0 & f’(x*)=0

In both cases, the complementarity condition holds: 

first, the derivative at the minimizer must be nonnegative;

second, it must be zero if the minimizer is in the interior of the 

constraint set, that is, the product of the derivative and the slack 

value mut be zero

xX* X*
x

f(x)f(x)
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What are in the Final Tableau

cT-yTA -yTb

(AB)-1A (AB)-1b

OS

- OVRC

Where price vector: yT=cB
T(AB)-1

Note that indexes in B can be in any order but 
still produce the same y. 
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What are in the Final Tableau of the 
Production Problem

Recall that the initial tableau of production problem

max pTx,         s.t.      Rx ≤ b, x ≥ 0

After transform it into the standard equality form:

OS

- OVRC

-pT-yTR -yT -yTb

(AB)-1R   (AB)-1 (AB)-1b

-pT 0 0

R     I b

- SP

Basis Inverse



The 2-Product LP Problem Example
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B 0 0 0 1 1 5/2

3 0 0 1 1 −1 1/2

2 0 1 0 1 0 1

1 1 0 0 −1 1 1/2

Final Tableau

min −x1 −2x2

s.t. x1 +x3 = 1

= 1x2 +x4

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.



max 8x1 +14x2 +30x3 +50x4

subject to x1 +2x2 +10x3 +16x4 +x5 = 800

1.5x1 +2x2 +4x3 +5x4 +x6 = 1000

0.5x1 +0.6x2 +x3 +2x4 +x7 = 340

x ≥ 0.
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A 4-Product Production Problem

x1 x2 x3 x4 x5 x6 x7

B -8 -14 -30 -50 0 0 0 0

5 1 2 10 16 1 0 0 800

6 1.5 2 4 5 0 1 0 1000

7 0.5 0.6 1 2 0 0 1 340



x1 x2 x3 x4 x5 x6 x7

B 0 0 28 40 5 2 0 6000

2 0 1 11 19 1.5 -1 0 200

1 1 0 -12 -22 -2 2 0 400

7 0 0 -4 1.6 0.1 -0.4 1 20
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Final Tableau

xB

- OV
- yT

rT
N

(AB)-1(AB)-1AN



Given a BFS in the LP standard form with basis AB

xB = (AB)−1b > 0,       xN = 0,

so that small change in b does not change the optimal basis 
and the shadow price vector remains:

yT = cB
T(AB)-1

At optimality, the OV is a function of b:

cT x = cB
T xB = cB

T (AB)−1b = yT b.

Thus, when b is changed to b+Δb, then the new OV 

OV+= cB
T xB = cB

T (AB)−1(b+Δb)= yT (b+Δb)=OV+ yTΔb

when the basis is unchanged.
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Interpretation of y: Shadow Price of RHS b

=Net Change

OV(b) is a convex function of b
and ∇ OV(b) = y* 

OV(b):=min 𝑐𝑇𝑥
s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0



• The dimension of the shadow price (SP) vector equals the 
dimension of the right-hand-side (RHS) vector, or the number 
of linear constraints.

• In general, the optimal SP on a given active constraint is the 
rate of change in the optimal value (OV) of the objective as the 
RHS of the constraint increases in a interval, ceteris paribus.

• All inactive or nonbinding constraint have zero SP.

• In non-degenerate case, a small change in the RHS would 

change the OV and the optimal solution (OS), but not the basis

and the optimal SPs.

• For infeasible problems, SPs represent which constraints need 

to be relaxed to make them feasible.
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LP Shadow Price Properties



Given a BFS in the LP standard form with basis AB

and its companion SP vector:

yT = cB
T(AB)-1  and RC  rN

T=cN
T-yTAN > 0

If  cN makes a small change, nothing would change.
But if they reduced enough such that one of the 
reduced costs become negative, then the current 
BFS is no longer optimal.
On the other hand, if cB makes a small change, say cB

is changed to cB +ΔcB, then the new SP and OV 

y+
T = (cB + ΔcB )T(AB)-1 =yT + ΔcB

T (AB)−1

OV+=(yT+ΔcB
T(AB)−1)b=OV+ΔcB

T (AB)−1 b=OV + ΔcB
T xB
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Interpretation of r: Reduced-Gradient Vector

=Net Change

In general, the OV is a concave function of c 



• The dimension of the reduced-cost (RC) or reduced gradient 
vector equals the dimension of the objective coefficient 
vector or the number of decision variables.

• In general, the RC value of any non-basic variable is the 

amount the objective coefficient of that variable would have 

to change, ceteris paribus, in order for it to become a basic 

variable at optimality.

• All basic variables have zero RC.

• In non-degenerate case, a small change in the objective 

coefficients may change OV and optimal SP, but not the 

basis and OS.
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LP Reduced Gradient Properties



By how much must the unit profit on variable 3 be increased before it would be 

profitable to manufacture it?

:This can be answered by simply checking the reduced cost of the final tableau 

for x3, which is 28. The same question for x4 is 40.
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Post-Optimality Questions 
for the 

4-Product Problem

B 0 0 28 40 5 2 0 6000

2 0 1 11 19 1.5 -1 0 200

1 1 0 -12 -22 -2 2 0 400

7 0 0 -4 1.6 0.1 -0.4 1 20



A competitor located next door has offered the manager additional Resource 1 at a 

rate of $4.50 per unit. Should he accept his offer?

: Easy, take it since the shadow price for this resource is $5

Suppose instead that the competitor offers the manager 250 units of Resource 1 

for a total of $1,100, Should he accept his offer? (The manager can only accept or 

reject the extra 250 units.)

:We need to resolve the LP problem
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B 0 0 28 40 5 2 0 6000

2 0 1 11 19 1.5 -1 0 200

1 1 0 -12 -22 -2 2 0 400

7 0 0 -4 1.6 0.1 -0.4 1 20

Post-Optimality Questions 
for the 

4-Product Problem



The owner has approached the manager with a thought about 

producing a new type of product that would require 4 units of Resource 

1, 4 units of Resource 2 and 1 unit of Resource 3. What should be the 

minimum unit profit of the new product such that it is to be 

manufactured?

: The answer is 28, why?
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B 0 0 28 40 5 2 0 6000

2 0 1 11 19 1.5 -1 0 200

1 1 0 -12 -22 -2 2 0 400

7 0 0 -4 1.6 0.1 -0.4 1 20
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Post-Optimality Questions 
for the 

4-Product Problem



The (Penalty) Lagrange Function or Lagrangian was introduced for a 
constrained optimization problem to make it into a less constrained 
or unconstrained optimization problem. 
For LP in the standard equality form, a partial 
Penalty Lagrangian is:

minx L(x,y) = cTx- yT(Ax-b), s.t. x ≥ 0;
where multipliers y in the Lagrange function play the role of penalty 
weights on equality constraint violations. One can adjust them 
whenever a constraint is violated at the minimizer of the Lagrange 
optimization problem (in the text book, we used λ=-y)

The goal is to select y such that the Lagrangian minimization yields 

an optimal solution x that is also optimal to the original constrained 

problem. It turns out such y must be an optimal shadow-price 
vector of the original LP problem.
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The Lagrange Function and Theory

min 𝑐𝑇𝑥
s.t. 𝐴𝑥 − 𝑏 = 0,

𝑥 ≥ 0
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min −x1 −2x2

s.t.         x1 +x3 = 1

= 1x2 +x4

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.

For this example, the Lagrange function would be

L(x,y)=−x1−2x2 - y1(x1+x3 -1)- y2(x2+x4 -1)- y3(x1+x2 + x5 -1.5)

If we set y=(0,-1,-1)T then L(x, (0,-1,-1)T)= x4 + x5 -2.5. 
Therefore, minimize it subject to each variable to be nonnegative 

implies x4 =0 and x5 =0. Together with the equality constraints 
Ax=b in the original problem they yield the optimal solution for 
the original optimization problem.
Any other setting of y values in the Lagrangian will not make x
possibly feasible to the original problem - either an xj is negative 
or Ax≠b.



L(x,y) = cTx- yT(Ax-b)
Note the gradient vector with respect to x is

∇x L(x,y) = c- ATy
which we also called the reduced-cost vector r.  The 
function can be viewed as a “penalty” function for 
equality constraints. 
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Optimality Condition via the Lagrangian Gradient 

Theorem A solution x in the LP standard equality form is 
optimal if and only if there is multiplier vector y such that 
the gradient vector with respect to y of the Lagrange 
function is a zero vector; and the gradient vector with 
respect to x is nonnegative and it is complementary to x.
The latter is because, consider  minx f(x) s.t. x ≥ 0,
x is minimal only if ∇ f(x) ≥ 0 and it is complementary to x.

min 𝑐𝑇𝑥
s.t. 𝐴𝑥 − 𝑏 = 0,

𝑥 ≥ 0



The Lagrange Function or Lagrangian can include variable 
nonnegativity as part of the constraints so that it becomes an 
unconstrained problem:

minx L(x,y,r) = cTx- yT(Ax-b)-rTx.
where multipliers in y in the Lagrange function are 
penalty weights on equality constraint violations, 

and multipliers in r are penalty weights on inequality 

constraints x≥0 . Note that each penalty weight in r must be 

nonnegative since we only penalize the corresponding entry in x who 
becomes negative but no penalty otherwise.  
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Whole Penalty Lagrangian

Theorem A feasible solution x in the LP standard equality form is 
optimal if and only if there are multiplier vectors y and r≥0 such that 
the gradient vector with respect to x of the Lagrange function is a
zero vector and r is complementary to x.

min 𝑐𝑇𝑥
s.t. 𝐴𝑥 − 𝑏 = 0,

𝑥 ≥ 0


