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Recall of BFS Optimality Test/Condition
When a BFS with basis B, x; , is optimal?
Xz =(Ag) b 20, x,, =0
rr=c™-y'A >0
where the shadow-price/multiplier vector y"=c,’(A;) ™.
Moreover OV =c/x=c;/x;=c;/(A;)'b=y'b
The existence of such a shadow-price/multiplier vector y is

served as a certificate of the optimality of corner feasible

solution x. Such a y is also called optimal shadow-price vector.

Dos this optimal test/condition apply to any feasible solution x?
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The Optimality Condition Theorem

- T
Theorem A feasible solution x in the LP standard |MIN € X

equality form is optimal if and only if there is an s.t. AXx =D,
optimal shadow-price vector y such that:

Xx=>0
( )
! c'™x —bTy=0 }
AX =b,x20
x,y) € (R, R™):
\ Aly S cC )

This is a system of linear inequalities and equations. Thus it is

easy to verify whether or not a pair (x, y) is optimal by a
computer.
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Sketch Proof of The Optimality Condition Theorem

Consider any vector y who satisfies min_ o'
Ay <c.

Then for any feasible solution X in the LP standard s.t. Ax=D,

equality form, we must have X=>0

cTXx—bTy=cTx—(Ax)Ty=cTx —y/(AX)7(cT- yTA)x 2 0.

That is, the value b y is a lower bound on any feasible
objective value cT x.

Thus, ifc'x =bTy, ¢’ X must be the minimal among all
possible feasible solution X.

(Of course, b™y must be maximal among all possible y

such that ATy < c, which is called the dual program;
more on this later.)
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An Equivalent Optimality Condition

A feasible solution x in the LP standard equality
form is optimal if and only if there are vectors

(v, r) such that:

f

!

\

T n
Since rix =3"_; rx

c'™X —bTy=0orr'™x=0

x,y,r) (R, R", R"):

AX =b,x20

Aly +r =¢,r20

min c¢'x
s.t. Ax =D,
x>0

J

x; and all entries are nonnegative, the condition

implies that rx, =0 for all j; that is, for each j, at least one of r;and x,

is 0. We often call this a complementarity property: two

nonnegative vectors rand x are complementary to each other.
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Physical Explanation of Complementarity Condition

Complementarity or Complementary-Slackness Phenomenon typically

occurs when optimization with inequality constraints.

Consider min f(x), s.t. x=0
A

f(x) \/ f(x)

X* I X> X* X

Two possible Scenarios:
x*=0&f(0)=0 or x*>0 & f'(x*)=0
In both cases, the complementarity condition holds:
first, the derivative at the minimizer must be nonnegative;
second, it must be zero if the minimizer is in the interior of the
constraint set, that is, the product of the derivative and the slack

value mut be zero

Yinyu Ye, Mini-course Lecture Notes #6



Complementary Slackness in World Cup Betting

Orders Filled
Order Price Quantity Filled Argentina Brazil Italy Germany France
Limit Limit
1 0.75 10 5 1 1 1
2 0.35 5 5 1
3 0.40 10 5 1 1 1
4 0.95 10 0 1 1 1 1
5 0.75 5 5 1 1
Shadow State Prices
Argentina Brazil Italy Germany France
Price 0.20 0.35 0.20 0.25 0.00
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Interpretation of y: Shadow Price Vector of RHS b
Given a BFS in the LP standard form with basis Ag
Xs = (Ag) b >0, xy=0,

so that small change in b does not change the optimal basis
and the shadow price vector remains:

yT — CBT(AB)-l
At optimality, the OV is a function of b:
c'x=c;"xg =¢; (Az) b =y'h.
Thus, when b is changed to b+Ab, then the new OV
OV,=cz'xg = cz' (Ag) }(b+Ab)=yT (b+Ab)=0V+|y'Ab

when the basis is unchanged. =Net Change
OV(b):=min c¢’x
OV(b) is a convex function of b st. Ax = b,

and VOV(b) =y* x>0
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Summary of Shadow Price (Lagrange Multiplier,
Dual Variable)

* Each constraint is associated with a shadow price, also called
Lagrange multiplier or dual variable

 They are used to certify whether or not a feasible solution is
optimal.

e At an optimal solution, all inactive constraints have zero-
valued Lagrange multiplier (called complementarity)

* At optimality, the Lagrange multiplier on a given active
constraint is the rate of change in the optimal value (OV) as
the RHS of the constraint increases with all other data held
fixed.

 The reduced cost can be viewed as the Lagrange multiplier of
the nonnegative constraint; a BFS is minimal if all reduced
costs become nonnegative.
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Recall in the LP production example, the BFS with B =1{1, 2, 3} is
optimal with x=(%, 1,%,0,0)"and y= (0, -1, -1)'
min —X1 —2X2

S.t. X1 +X3 -
X2 +X4 =1
X1 +X +x5s =1.5
X, X2, X3 X Xs 20

The current OV=-2.5

* If b, isincreased or decreased a little, does OV change?

* If b,isincreased or decreased a little, does OV change? How
much?

* If byisincreased or decreased a little, does OV change? How
much?

This is called sensitivity analyses and an economical interpretation of

y.
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The Primal and Dual Problem of Optimization

" Every optimization problem is associated with another optimization
problem called dual (the original problem is called primal).

" Every variable of the dual is the Lagrange multiplier associated with
a constraint in the primal.

* The dual is max (min) if the primal is min (max)

" If the primal is a convex optimization problem, then the dual is also
a convex optimization problem. Moreover, the two optimal
objective values are equal (under mild technical assumptions).

" The optimal solution of the dual is the optimal Lagrange multiplier
or shadow price vector of the primal.

* The above statements are also true if the constraint are nonlinear.
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Systematic Way to Construct the LP Dual

obj. coef. Vector right-hand-side
right-hand-side obj. coef. vector
A AT
Max model Min model
xj 20 Jth constraint 2

xi<0 g Jjth constraint <

x; free jth constraint =
ith constraint < yi 20
ith constraint > yi<0
ith constraint = yifree

The dual of the dual is the primal: either side can be the primal
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The Economic Interpretation of the Production Dual

Primal
Dual
max  x, +2ux, :
: min y, +V, +1.5Y,
S.t. b <1
& S.t. Y, + y, =1
x, <1
) <15 Y, T Y3 > 2
x, + x, <I.
1 ) Yio Yor  Y; >0
X, x, =20
max ¢’x s.t. Ax<b, x>0 min b’y st. Aly>c, y>0

Acquisition Pricing:
e y: prices of the resources

« A'y>c: the prices are competitive for each product

* minb’y: minimize the total liquidation cost
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The Transportation Dual

Ci1, X131

Supply
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Demand
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The Transportation Example

1 2 3 4 | Supply
1 12 13 4 6 500 u,
2 6 4 10 11 700 u,
3 10 9 12 4 800 U,
Demand 400 900 200 500 | 20000
Vy vV, A V,
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The Transportation Dual Interpretation

Primal

m n
min - > > ¢

i=1 j=1

s.t. Y x =5, Vi=1..m
j=1

m

» x;=d;, Vj=1..n

=1

>0

ij =

X

Vi, |
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Dual

m n
max Y Su;+» d,v,
i—1 =1

S.t. U +v; <¢;, VI,]

Shipping Company’s new charge
scheme:

ui: supply site unit charge
vi: demand site unit charge

ui+ v; < cjj: competitiveness
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Look at @ Max-Flow Problem
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Sink
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The Primal Formulation

Let x;; be the flow rate from node i to node j. Then the problem

can be formulated as

max X41

s.t. X21 + X31 + X41 —X12 —X13 =0, Y1
X12 T X32 + X42 —X21 —X23 —X24X13 =0, %)
T X23 + X43 7 X31 T X32 — X34 X4+ =, V3
X34 7 X41 7 X42 7 X43 =0, Va
Xij <kj, V(,]) €A, Z;

Xij 20, v(i,) € A. I

Corresponding
Dual variables
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The Dual of Max-Flow: the Min-Cut Problem

Corresponding

min 2 (ij)ea U2 Primal variables
st.  yi-ya=1, Xa1
-yi+ Y2+ 212 20, X12
—y1+y3+213 20, X13
—Y2+ Ya+ 224 20, X 24
~y3+yat+Z3s 20, X34
zij 20, Wi, j) EA.

yi: node potential value; wlog set y, =0 so that y; =1 and at
optimality for all other y:

1 ifiis on the source side 1, ify=1and y=0
Y= and z.=

1

O ifi1is not in the source side 0 otherwise

Yinyu Ye, Mini-course Lecture Notes #6 19



The Min-Cut Solution: Min-Cut Value=8
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All other z,=0
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The Dual of the Information Market Problem
The ith order is given as triple (a; ER™, i €R., gi ER.):

ai = (a1, ai2, ..., &im)
is the betting indication row vector where each component is
either 1 or O, where 1 is winning state and 0 is non-winning

state;

tiis the bidding price for one share of such a contract, and
giis the maximum number of shares the bidder like to own.

A contract /share on an order is a paper agreement so that on

maturity it is worth a notional $S1 dollar if the order includes the

winning state and worth SO otherwise.

Let x; be the number of units awarded to the ith order.
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A Risk-Free Mechanism of Market Maker

Corresponding
Dual Variables

max 7T'X —  Xp1
st. A'x-1-xp:1<0 p
X <q
X >0
Xn+1 free

where 1 is the vector of all ones.

i’ x: the revenue amount can be collected.

Xn+1: the worst-case cost (amount need to pay to the winners).
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The Dual: Regression with “Under-Bid” Filtering

min qg’'s
s.t. Ap+s 2 m,
-1'p  =-1,
(p, s) 2 0.

p;: the shadow/dual price of state j;

a;p: the ith order unit cost at prices p;
s;: the unit profit from the jth order ( s=max{0, m-Ap} )

The dual problem is to minimize the total “Regression Loss”
collected from the (competitive or high-bid) orders, q’s.
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ReLu-Regression for Probability Distribution/Information

min g’ max{0, r-Ap}
s.t. 1p =1,
p 20

p;: the shadow-price/probability estimation of state j;

a;p: the ith order unit cost at prices p;
rt;: the ith order bidding price;
q: the ith order quantity limit;

The dual problem is to minimize the total weighted
discrepancy among the competitive bidders such that all
winners’ betting beliefs r are fully utilized, while under-

bidders (outliers) would be automatically removed from the
estimation.
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The World Cup Betting Example

Orders Filled
Order Price Quantity | Filled | Argentina | Brazil Iltaly | Germany | France
Limit Limit

1 0.75 10 5 1 1 1

2 0.35 5 5 1

3 0.40 10 5 1 1 1
4 0.95 10 0 1 1 1 1

5 0.75 5 5 1 1
State Prices

Argentina Brazil Italy Germany France
Price 0.20 0.35 0.20 0.25 0.00
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