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When a BFS with basis B, xB , is optimal?

where the shadow-price/multiplier vector yT=cB
T(AB)−1. 

Moreover        OV = cTx = cB
TxB = cB

T(AB)−1b = yTb
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Recall of BFS Optimality Test/Condition

xB =(AB)−1b ≥0, xN =0

rT = cT- yTA ≥  0

The existence of such a shadow-price/multiplier vector y is 

served as a certificate of the optimality of corner feasible 

solution x. Such a y is also called optimal shadow-price vector.

Dos this optimal test/condition apply to any feasible solution x?
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This is a system of linear inequalities and equations. Thus it is 

easy to verify whether or not a pair (x, y) is optimal by a 

computer.

3

The Optimality Condition Theorem

Theorem A feasible solution x in the LP standard 
equality form is optimal if and only if there is an 
optimal shadow-price vector y such that: 

⎩

⎧
⎪

⎨
(x, y) ∈ (Rn , Rm ) :

⎪

cT x − bT y = 0

Ax              = b, x ≥ 0

AT y            ≤  c

⎫

⎪⎬
,

⎪
⎪

⎭

0         

,    s.t.

   min





x

bAx

xcT
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Sketch Proof of The Optimality Condition Theorem

Consider any vector y who satisfies
AT y ≤ c.

Then for any feasible solution x in the LP standard 
equality form, we must have

cT x−bT y= cT x−(Ax)T y= cT x−yT(Ax)=(cT- yTA)x ≥ 0.

That is, the value bT y is a lower bound on any feasible 
objective value cT x. 

Thus, if cT x = bT y, cT x must be the minimal among all 
possible feasible solution x. 
(Of course, bT y must be maximal among all possible y
such that AT y ≤ c, which is called the dual program; 

more on this later.)

0         

,    s.t.

   min





x

bAx

xcT

Yinyu Ye,  Mini-course Lecture Notes #6



Since rTx = ∑n
j=1 rjxj and all entries are nonnegative,  the condition 

implies that rjxj =0 for all j; that is, for each j, at least one of rj and xj 

is 0. We often call this a complementarity property: two 

nonnegative vectors r and x are complementary to each other.
5

An Equivalent Optimality Condition

A feasible solution x in the LP standard equality 
form is optimal if and only if there are vectors 
(y, r) such that: 

⎩

⎧
⎪

⎨
(x, y, r) ∈ (Rn , Rm, Rn):

⎪

cT x − bT y=0 or rTx = 0

Ax              = b, x ≥ 0

AT y  + r      = c, r ≥ 0

⎫

⎪⎬
,

⎪
⎪

⎭

0         

,    s.t.

   min





x

bAx

xcT
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Physical Explanation of Complementarity Condition

Complementarity or Complementary-Slackness Phenomenon typically 

occurs when optimization with inequality constraints.

Consider     min   f(x),    s.t. x ≥ 0

Two possible Scenarios:

x*= 0 & f’(0) ≥ 0                   or                       x*>0 & f’(x*)=0

In both cases, the complementarity condition holds: 

first, the derivative at the minimizer must be nonnegative;

second, it must be zero if the minimizer is in the interior of the 

constraint set, that is, the product of the derivative and the slack 

value mut be zero

xX* X*
x

f(x)f(x)
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Complementary Slackness in World Cup Betting
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Orders Filled

Order Price 
Limit

Quantity 
Limit

Filled Argentina Brazil Italy Germany France

1 0.75 10 5 1 1 1

2 0.35 5 5 1

3 0.40 10 5 1 1 1

4 0.95 10 0 1 1 1 1

5 0.75 5 5 1 1

Argentina Brazil Italy Germany France

Price 0.20 0.35 0.20 0.25 0.00

Shadow State Prices
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Given a BFS in the LP standard form with basis AB

xB = (AB)−1b > 0,       xN = 0,

so that small change in b does not change the optimal basis 
and the shadow price vector remains:

yT = cB
T(AB)-1

At optimality, the OV is a function of b:

cT x = cB
T xB = cB

T (AB)−1b = yT b.

Thus, when b is changed to b+Δb, then the new OV 

OV+= cB
T xB = cB

T (AB)−1(b+Δb)= yT (b+Δb)=OV+ yTΔb

when the basis is unchanged.
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Interpretation of y: Shadow Price Vector of RHS b

=Net Change

OV(b) is a convex function of b
and ∇ OV(b) = y* 

OV(b):=min 𝑐𝑇𝑥
s.t. 𝐴𝑥 = 𝑏,

𝑥 ≥ 0
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Summary of Shadow Price (Lagrange Multiplier, 
Dual Variable)

• Each constraint is associated with a shadow price, also called 
Lagrange multiplier or dual variable

• They are used to certify whether or not a feasible solution is 
optimal. 

• At an optimal solution, all inactive constraints have zero-
valued Lagrange multiplier (called complementarity)

• At optimality, the Lagrange multiplier on a given active 
constraint is the rate of change in the optimal value (OV) as 
the RHS of the constraint increases with all other data held 
fixed.

• The reduced cost can be viewed as the Lagrange multiplier of 
the nonnegative constraint; a BFS is minimal if all reduced 
costs become nonnegative.

9
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Recall in the LP production example, the BFS with B = {1, 2, 3} is 

optimal with x = (½, 1, ½, 0, 0)T and y = (0,  -1,  -1)T 

min −x1 −2x2

s.t.         x1 +x3 = 1

= 1x2 +x4

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.

The current OV= -2.5
• If b1 is increased or decreased a little, does OV change?
• If b2 is increased or decreased a little, does OV change? How 

much?
• If b3 is increased or decreased a little, does OV change? How 

much?
This is called sensitivity analyses and an economical interpretation of 
y .
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The Primal and Dual Problem of Optimization

• Every optimization problem is associated with another optimization 
problem called dual (the original problem is called primal).

• Every variable of the dual is the Lagrange multiplier associated with 

a constraint in the primal.

• The dual is max (min) if the primal is min (max)

• If the primal is a convex optimization problem, then the dual is also 

a convex optimization problem. Moreover, the two optimal 

objective values are equal (under mild technical assumptions).

• The optimal solution of the dual is the optimal Lagrange multiplier 

or shadow price vector of the primal.

• The above statements are also true if the constraint are nonlinear.
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obj. coef. Vector 

right-hand-side 

A

right-hand-side 

obj. coef. vector

AT

Max model

xj ≥ 0

xj ≤ 0

xj free

ith constraint ≤ 

ith constraint ≥ 

ith constraint =

Min model 

jth constraint ≥     

jth constraint ≤

jth constraint =

yi ≥ 0

yi ≤ 0

yi free

Systematic Way to Construct the LP Dual

The dual of the dual is the primal: either side can be the primal
12

Yinyu Ye,  Mini-course Lecture Notes #6



13

The Economic Interpretation of the Production Dual

         0        ,   ,             

2                          

1                   s.t.

5.1       min

321

32

31
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







yyy

y y

   yy

yyy

Dual
Primal

Acquisition Pricing:
• y: prices of the resources

• ATy≥c: the prices are competitive for each product

• min bT y: minimize the total liquidation cost

max cT x s.t. Ax ≤ b,  x ≥ 0 min bT y s.t. AT y ≥ c, y ≥ 0
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The Transportation Dual 

2
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1 2 3 4 Supply

1 12 13 4 6 500   u1

2 6 4 10 11 700   u2

3 10 9 12 4 800   u3

Demand 400

v1

900

v2

200

v3

500

v4

20000

15

The Transportation Example
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The Transportation Dual Interpretation
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,   ,s.t.

  max
1 1



 
 

Shipping Company’s new charge 
scheme:

ui: supply site unit charge

vi: demand site unit charge

ui + vj  ≤ cij : competitiveness

Primal

Dual
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Look at a Max-Flow Problem 
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Let xij be the flow rate from node i to node j. Then the problem 

can be formulated as

max x41

x21 + x31 + x41 − x12 − x13

x12 + x32 + x42 − x21 − x23 − x24 x13

+ x23 + x43 − x31 − x32 − x34 x24 +

x34 − x41 − x42 − x43

xij 

xij

y1  

y2  

y3  

y4 

z ij

s.t. = 0,

= 0,

= 0,

= 0,

≤ kij , ∀(i, j) ∈ A,

≥ 0, ∀(i, j) ∈ A.
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The Primal Formulation 

Corresponding 
Dual variables
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The Dual of Max-Flow: the Min-Cut Problem 

yi: node potential value; wlog set y4  = 0 so that y1  = 1 and at 
optimality for all other yi:

min ∑ (i,j)∈A 
kij zij

s.t. y1 − y4  = 1,

−y1 + y2 + z12  ≥ 0,

−y1 + y3 + z13  ≥ 0,

...

−y2 + y4 + z24  ≥ 0,

−y3 + y4 + z34  ≥ 0, 

zij ≥ 0, ∀(i, j) ∈ A.

x41  

x12  

x13  

…

x 24

x34

1   if i is on the source side                             1, if yi=1 and yj=0

yi = and zij=                                         

0  if i is not in the source side                          0   otherwise

Corresponding
Primal variables
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The Min-Cut Solution: Min-Cut Value=8 

z24 = 1

1

SinkSource

3 4

2

3

3

y4=0

y3=0

y2=1

y1=1

z23 = 1

z13 = 1

2

All other zij=0
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The ith order is given as triple (ai ∈ Rm, πi ∈ R+, qi  ∈ R+): 

ai = (ai1, ai2, ..., aim)
is the betting indication row vector where each component is 
either 1 or 0, where 1 is winning state and 0 is non-winning 
state; 

πi is the bidding price for one share of such a contract, and 

qi is the maximum number of shares the bidder like to own.

A contract /share on an order is a paper agreement so that on 

maturity it is worth a notional $1 dollar if the order includes the 

winning state and worth $0 otherwise.

Let xi be the number of units awarded to the ith order.
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The Dual of the Information Market Problem
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max πT x  −      xn+1

s.t. AT x − 1 · xn+1  ≤ 0

x                 ≤ q 

x                 ≥ 0

xn+1 free

where 1 is the vector of all ones.

πT x: the revenue amount can be collected.
xn+ 1 : the worst-case cost (amount need to pay to the winners).

22

A Risk-Free Mechanism of Market Maker 
Corresponding 

Dual Variables

p

s
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pj: the shadow/dual price of state j;

aip: the ith order unit cost at prices p; 

sj: the unit profit from the jth order ( s=max{0, π-Ap} )

The dual problem is to minimize the total “Regression Loss” 
collected from the (competitive or high-bid) orders, qT s.

min qT s

s.t. Ap + s

−1T p

≥  π,

= −1,

(p, s) ≥ 0.

23

The Dual: Regression with “Under-Bid” Filtering 
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pj: the shadow-price/probability estimation of state j;

aip: the ith order unit cost at prices p; 

πi: the ith order bidding price;

qi: the ith order quantity limit;

The dual problem is to minimize the total weighted 
discrepancy among the competitive bidders such that all 
winners’ betting beliefs π are fully utilized, while under-
bidders (outliers) would be automatically removed from the 
estimation.

min qT max{0, π-Ap} 

s.t. 1T p
p

= 1,
≥ 0

24

ReLu-Regression for Probability Distribution/Information
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The World Cup Betting Example

25

Orders Filled

Order Price 
Limit

Quantity 
Limit

Filled Argentina Brazil Italy Germany France

1 0.75 10 5 1 1 1

2 0.35 5 5 1

3 0.40 10 5 1 1 1

4 0.95 10 0 1 1 1 1

5 0.75 5 5 1 1

Argentina Brazil Italy Germany France

Price 0.20 0.35 0.20 0.25 0.00

State Prices
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