The Transportation Simplex Method

Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

https://canvas.stanford.edu/courses/179677

Read Chapters 2.3, 4.1-4.2, 4.5

Recall the Simplex Method

- 1. Initialize with a minimization problem in the Tableau form with respect to a basic index set *B*. Let *N* denote the complementary index set.
- 2. Test for termination. First find (Dantzig rule): $r_e = \min_{j \in N} \{r_j\}$.

If $r_e \ge 0$, stop. The solution is optimal. Otherwise determine whether the column associated with x_e contains a positive entry. If not, the objective function is unbounded below. Terminate.

- 3. Ratio Test. Execute the RT to determine the maximum increase, the pivot row *o* and the pivot element.
- 4. Pivot step. Pivoting and updating the Tableau, the indexes of *B*. Return to Step 1.

The Transportation Simplex Method

$$\begin{array}{ll} \min & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij} \\ \text{s.t.} & \sum_{j=1}^{n} x_{ij} = s_i, \quad \forall \ i = 1, \dots, m \\ & \sum_{i=1}^{m} x_{ij} = d_j, \quad \forall \ j = 1, \dots, n \\ & x_{ij} \ge 0, \qquad \forall \ i, \ j \end{array}$$

Assume that the total supply equal the total demand. Thus, exactly one equality constraint is redundant.

At each step the simplex method attempts to send units along a route that is **unused (non-basic)** in the current BFS, while eliminating one of the routes that is currently being used (basic).

Transportation and Supply Chain Network

The Transportation Data Table

	1	2	3	4	Supply
1	12	13	4	6	500
2	6	4	10	11	700
3	10	9	12	4	800
Demand	400	900	200	500	2000

Transportation Simplex Method: Phase I

- 1. Start with the cell in the northwest corner cell
- 2. Allocate as many units as possible, consistent with the available supply and demand.
- 3. Move one cell to right if there is remaining supply; otherwise, move one cell down.
- 4. goto Step 2.

				500
				700
				800
400	900	200	500	

400				100
				700
				800
0	900	200	500	

400	100			0
				700
				800
0	800	200	500	

400	100			0
	700			0
				800
0	100	200	500	

400	100			0
	700			0
	100			700
0	0	200	500	

400	100			0
	700			0
	100	200		500
0	0	0	500	

400	100			0
	700			0
	100	200	500	0
0	0	0	0	

A BFS as a "Tree" Structure in the Network

(Tailored) Transportation Simplex Method: Phase II

 Determine the shadow prices (for each supply side u_i and each demand side v_j) from every USED cell (basic variable)

$$\mathbf{y}^{\mathsf{T}} = \mathbf{c}^{\mathsf{T}}_{B}(A_{B})^{-1} \Longrightarrow \mathbf{y}^{\mathsf{T}}A_{B} = \mathbf{c}^{\mathsf{T}}_{B} \Longrightarrow u_{i} + v_{j} = c_{ij}$$

One can always set $v_n = 0$ by viewing the last demand constraint redundant. Then do back-substitution...

400	100			0
12	13			u ₁ =
	700			0
	4			u ₂ =
	100	200	500	0
	9	12	4	u ₃ =
0	0	0	0	
V ₁ =	V ₂ =	V ₃ =	v ₄ =0	

400	100			0
12	13			u ₁ =
	700			0
	4			u ₂ =
	100	200	500	0
	9	12	4	u ₃ =4
0	0	0	0	
v ₁ =	V ₂ =	V ₃ =	v ₄ =0	

400	100			0
12	13			u ₁ =
	700			0
	4			u ₂ =
	100	200	500	0
	9	12	4	u ₃ =4
0	0	0	0	
v ₁ =	V ₂ =	v ₃ =8	v ₄ =0	

400	100			0
12	13			u ₁ =
	700			0
	4			u ₂ =
	100	200	500	0
	9	12	4	u ₃ =4
0	0	0	0	
V ₁ =	v ₂ =5	v ₃ =8	v ₄ =0	

400	100			0
12	13			u ₁ =
	700			0
	4			u ₂ =-1
	100	200	500	0
	9	12	4	u ₃ =4
0	0	0	0	
V ₁ =	v ₂ =5	v ₃ =8	v ₄ =0	

400	100			0
12	13			u ₁ =8
	700			0
	4			u ₂ =-1
	100	200	500	0
	9	12	4	u ₃ =4
0	0	0	0	
V ₁ =	V ₂ =5	V ₃ =8	V ₄ =0	
	_			

400 12	100 13			⁰ u ₁ =8
	700 4			0 u ₂ =-1
	100 9	200 12	500 4	⁰ u ₃ =4
⁰ v ₁ =4	⁰ v ₂ =5	⁰ v ₃ =8	⁰ v ₄ =0	

Transportation Simplex Method: Phase II

1. Determine the shadow prices (for each supply side u_i and each demand side v_j) from every USED cell (basic variable) $\mathbf{y}^{\mathsf{T}} = \mathbf{c}^{\mathsf{T}}_{B}(A_{B})^{-1} => \mathbf{y}^{\mathsf{T}} A_{B} = \mathbf{c}^{\mathsf{T}}_{B} => u_i + v_i = c_{ii}$

One can always set $v_n = 0$ by viewing the last demand constraint redundant; then do back-substitution...

 Calculate the reduced costs for the UNUSED cells (non-basic variable)

$$r_N = c^T v^T A_N \implies r_{ij} = c_{ij} - u_i - v_j$$

If the reduced cost for every unused cell is nonnegative, then STOP: declare **OPTIMAL**

Step 2: Compute Reduced Costs

400	100			500
12	13	4	6	u ₁ =8
	700			700
6	4	10	11	u ₂ =-1
	100	200	500	800
	100	200	500	800
10	9	12	4	u ₃ =4
400	900	200	500	2000
v ₁ =4	v ₂ =5	v ₃ =8	v ₄ =0	

 $\boldsymbol{r_{ij}} = \boldsymbol{c_{ij}} - \boldsymbol{u_i} - \boldsymbol{v_j}$

Step 2: Compute Reduced Costs

400 12	0	100 13	0	4	-12	6	-2	500 u ₁ =8
6	3	700 4	0	10	3	11	12	700 U ₂ =-1
10	2	100 9	0	200 12	0	500 4	0	800 u ₃ =4
400 V ₁ =	=4	900 V ₂ :	=5	200 V) 7 ₃ =8	50 \	0 / ₄ =0	2000

Reduced costs are computed in RED

Transportation Simplex Method: Phase II

1. Determine the shadow prices (for each supply side u_i and each demand side v_j) from every USED cell (basic variable)

$$\mathbf{y}^{\mathsf{T}} = \mathbf{c}^{\mathsf{T}}{}_{B}(A_{B})^{-1} \Longrightarrow \mathbf{y}^{\mathsf{T}} A_{B} = \mathbf{c}^{\mathsf{T}}{}_{B} \Longrightarrow U_{i} + V_{j} = C_{ij}$$

One can always set $v_n = 0$ by viewing the last demand constraint redundant; then do back-substitution...

2. Calculate the reduced costs for the UNUSED cells (non-basic variable) $r_N = c_N^T - y^T A_N \implies r_{ij} = c_{ij} - u_i - v_j$

If the reduced cost for every unused cell is nonnegative, then STOP: declare OPTIMAL

3. Select an unused cell with the most negative reduced cost as incoming. Using a chain-reaction-cycle, determine the max units (α) that can be allocated to the in-coming cell and adjust the allocation appropriately. Update the values of the new set of USED (basic) cells (a new BFS).

400	100			0
		+α		
	700			0
	100	200 -α	500	0
0	0	0	0	

400	100			0
		+α		
	700			0
	100	200	500	0
	+α	-α		
0	0	0	0	

400	100			0
	-α	+α		
	700			0
	100	200	500	0
	+α	-α		
0	0	0	0	

 $\alpha = 100$

400	100			0
	13 - α	4 +α		
	700			0
	100	200	500	0
	9 +α	12 - α		
0	0	0	0	

 α = 100, and the cost is reduced by 1200

Find the Cycle on the "Tree" Structure

Step 3: Update to the New BFS

400		100		0
	700			0
	200	100	500	0
0	0	0	0	

A New "Tree" Structure in the Network: Repeat the Procedure

Transportation Simplex Method: Phase II

1. Determine the shadow prices (for each supply side u_i and each demand side v_j) from every USED cell (basic variable)

 $\mathbf{y}^{\mathsf{T}} = \mathbf{c}^{\mathsf{T}}_{B}(A_{B})^{-1} \Longrightarrow \mathbf{y}^{\mathsf{T}} A_{B} = \mathbf{c}^{\mathsf{T}}_{B} \Longrightarrow U_{i} + V_{j} = C_{ij}$

One can always set $v_n = 0$ by viewing the last demand constraint redundant; then do back-substitution...

2. Calculate the **reduced costs** for the **UNUSED** cells (non-basic variable) $r_N = c^T v^T A_N \implies r_{ij} = c_{ij} - u_i - v_j$ If the reduced cost for every unused cell is nonnegative, then STOP: de

If the reduced cost for every unused cell is nonnegative, then STOP: declare OPTIMAL

3. Select an unused cell with the most negative reduced cost as in-coming. Using the minRT, chain-reaction-cycle, determine the max units (α) that can be allocated to the in-coming cell and adjust the allocation appropriately. Update the values of the new set of USED (basic) cells (a new BFS).

Go to Step 1