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Example 9: Reinforcement Learning and Markov 
Decision Process

• Markov Decision Process (MDP) provides a mathematical 
framework for modeling sequential decision-making in situations 
where outcomes are partly random and partly under the control 
of a decision maker, and it is called Reinforcement Learning lately.

• MDPs are useful for studying a wide range of optimization 
problems solved via stochastic dynamic programming, where it 
was known at least as early as the 1950s (cf. Shapley 1953, 
Bellman 1957).

• Modern applications include dynamic planning, social 
networking, and almost all other dynamic/sequential-decision-
making problems in real life.

• MDP is characterized by States and Actions; and at each time 
step, the process is in a state and the decision maker takes an 
action to optimize the long-term goal.
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State/Action Environment
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At each state, when the decision make takes an action (e.g., red), 
he or she pays an immediate cost (c ) and with a probability 
distribution (p ) ends at a state at the next time period.   
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A Simple RL/MDP Problem: Maze Run

Each state i (in Square) is equipped with a set of actions Ai , and they are colored 

in red (status quo move), blue (shortcut move); and each of them incurs an 

immediate cost cj. In this example, all actions have zero cost except the one 

from the state 4 (trap) to the final termination state 5 (Exit state which goes 

back to itself ). Each action is associated with transition probability node 

(circle) with distribution vector Pj to all states.
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Markov Decision Process with Finite or 
Discounted Infinite Horizon

• The Process can end at a finite horizon or time steps

• It can also extend to infinite horizon with a discount factor 𝛾

• A (stationary) policy is a set of actions taken, one per State, at 
anytime step

• A (stationary) policy  defines an expected and discounted present 
Cost-to-Go value for every state over all future time steps, that is, 
the overall expected present cost if starting from this very state 

• The MDP is to find the optimal stationary policy such that its 
overall expected present cost is minimized from an initial state

• It turns out that the optimal policies are identical for all possible 
initial states

5Yinyu Ye,  Stanford, MS&E211 Lecture Notes #3



Expected Cost-to-Go values of the Red Policy

Consider a finite horizon maze run where there is no discount. Assume the current 

policy takes all-red actions, then the corresponding expected cost-to-go state-

values would be given above, together with the expected values when taking 

alternative action in a state.

Clearly, this policy is not optimal…  The optimal policy is?

6

0

1/5

1111 1

1/2

2/3

3/4

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #3



The Optimal Policy

The optimal policy takes (red, red, read, blue, red) action for state (1,2,3,4,5). 

The corresponding expected overall cost-to-go values would be given above,  

together with the expected values when taking alternative action in a state.

Why is this policy optimal?  

Because for each state there is no action-switch that results in a lower cost.
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𝑦𝑖 = 𝑐 + 𝛾 𝑝𝑇 𝑦,
immediate cost      expect future cost 
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Infinite Discount Horizon: Compute the 
Cost-to-Go Value at State i in General 



Expected Cost-to-Go values of the Red Policy

Consider an infinite horizon maze run where the discount factor is 0.5. Assume the 

current policy takes all-red actions, then the corresponding expected cost-to-go 

state-values would be given above, together with the expected values when 

taking alternative action in a state

Is this policy optimal? No, action-switch at State 4 results a lower cost
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Cost-to-Go values of the Maze Run

• The cost-to-go values of the optimal policy with discount factor ϒ
for this simple example should meet the following conditions 

y6= 0+ γy1 ,     y5= 1+ γy6

y4=min{ 0+ γy5 , 0+γ(0.2y5+0.8y6) }, 

y3=min{ 0+ γy4 , 0+γ(0.5y5+0.5y6) }

y2=min{ 0+ γy3 , 0+γ(y4/3+y5/3+y6/3) }

y1=min{ 0+ γy2, 0+γ(0.25y3+0.25y4+0.25y5+0.25y6) }
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• yi: the expected overall present cost if 

stating from State i.

• State 5 is a trap

• State 6 is the exit state

• Each other state has two options:

Go directly to the next state or 

a short-cut go to other states         

with uncertainties
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LP Formulation of the Maze Run 
max y1 + y2 + y3 + y4 + y5 + y6

s.t. y6  ≤ 0+ γy1

y5 ≤ 1+ γy6     

y4 ≤ 0+ γy5

y4 ≤ 0+ γ(0.2y5+y6)

y3 ≤ 0+ γy4

y3 ≤ 0+γ(0.5y5+0.5y6) 

y2 ≤ 0+ γy3

y2 ≤ 0+ γ(0.33y4+0.33y5+0.33y6) 

y1 ≤ 0+ γy2

y1 ≤ 0+ γ(0.25y3+0.25y4+0.25y5+0.25y6) 
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The LP Formulation in General
• In general, let y ∈ Rm represent the expected present cost-to-go 

values of the m states, respectively, for a given policy. Then, the 
cost-to-go vector of the optimal policy, with the discount factor 
γ, by Bellman’s Principle is a Fixed Point:

• Such a fixed-point computation can be formulated as an LP

• The maximization is trying to pushing up each yi to the highest 
possible so that it equal to min-argument. When the optimal y 
is found, one can then find the index of the original optimal 
action/policy using argmin. 

.} ,,min{arg

,} ,,min{

 

 

iAjypcj

iAjypcy

i

T

jji

i

T

jji









12

max  

𝑖
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s.t. 𝑦𝑖 ≤ 𝑐𝑗 + 𝛾 𝑝𝑗
𝑇𝑦, ∀𝑗 ∈ 𝐴𝑖; ∀𝑖.
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Tic-Tac-Toe Game Against a Random Player
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States/Actions of Tic-Tac-Toe Game
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• Each State is a configuration of “cross” and “circle” locations

• Each Action at a state is to place a “cross” at an empty square

• After an action being taken at a state, the probability distribution 
of transferring to a new state at next time step is uniformly 
placing “circle” at every empty squares

• The immediate cost associated

with each action is zero except

at the very end …



State-Action Costs of the End Time
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Any action leading to win has cost -1

Any action leading to lose has cost 1

Any action leading to tie or undecided

has cost 0.  
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