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Example 9: Reinforcement Learning and Markov

Decision Process

* Markov Decision Process (MDP) provides a mathematical
framework for modeling sequential decision-making in situations
where outcomes are partly random and partly under the control
of a decision maker, and it is called Reinforcement Learning lately.

 MDPs are useful for studying a wide range of optimization
problems solved via stochastic dynamic programming, where it
was known at least as early as the 1950s (cf. Shapley 1953,
Bellman 1957).

* Modern applications include dynamic planning, social
networking, and almost all other dynamic/sequential-decision-
making problems in real life.

« MDP is characterized by States and Actions; and at each time
step, the process is in a state and the decision maker takes an
action to optimize the long-term goal.
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State/Action Environment
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At each state, when the decision make takes an action (e.g., red),
he or she pays an immediate cost (¢) and with a probability
distribution (p) ends at a state at the next time period.
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A Simple RL/MDP Problem: Maze Run

Each state i (in Square) is equipped with a set of actions A, , and they are colored
In red (status quo move), blue (shortcut move); and each of them incurs an
Immediate cost ¢;. In this example, all actions have zero cost except the one
from the state 4 (trap) to the final termination state 5 (Exit state which goes
back to itself ). Each action is associated with transition probability node
(circle) with distribution vector P; to all states.
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Markov Decision Process with Finite or
Discounted Infinite Horizon

* The Process can end at a finite horizon or time steps
* |t can also extend to infinite horizon with a discount factor y

* A (stationary) policy is a set of actions taken, one per State, at
anytime step

e A (stationary) policy defines an expected and discounted present
Cost-to-Go value for every state over all future time steps, that is,
the overall expected present cost if starting from this very state

e The MDP is to find the optimal stationary policy such that its
overall expected present cost is minimized from an initial state

* |t turns out that the optimal policies are identical for all possible
initial states
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Expected Cost-to-Go values of the Red Policy

Consider a finite horizon maze run where there is no discount. Assume the current
policy takes all-red actions, then the corresponding expected cost-to-go state-
values would be given above, together with the expected values when taking
alternative action in a state.

Clearly, this policy is not optimal... The optimal policy is?
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The Optimal Policy

The optimal policy takes (red, red, read, blue, red) action for state (1,2,3,4,5).
The corresponding expected overall cost-to-go values would be given above,
together with the expected values when taking alternative action in a state.

Why is this policy optimal?
Because for each state there is no action-switch that results in a lower cost.
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Infinite Discount Horizon: Compute the
Cost-to-Go Value at State i in General
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Expected Cost-to-Go values of the Red Policy

8/63 16/63 32/63 64/63

Consider an infinite horizon maze run where the discount factor is 0.5. Assume the
current policy takes all-red actions, then the corresponding expected cost-to-go
state-values would be given above, together with the expected values when
taking alternative action in a state

Is this policy optimal? No, action-switch at State 4 results a lower cost
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Cost-to-Go values of the Maze Run
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with uncertainties
* The cost-to-go values of the optimal policy with discount factor Y

for this simple example should meet the following conditions
Y6~ O+ Wir ¥s® 1+ Y¥s See “How to Linearize the
y,=min{ 0+ vy, 0+y(0.2y;+0.8y¢) },  Min-Function”
y3=min{ 0+ Vi O+V(O-5V5+O-5V6) } Lecture Note #2, Slide 10
y,=min{ 0+ yy; , 0+y(y,/3+ys/3+ye/3) }
y,=min{ 0+ yy,, 0+y(0.25y;+0.25y,+0.25y.+0.25y,) }
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LP Formulation of the Maze Run
maxy1+y2+y3+y4+y5+y6

S.t. Yo <0+vyy;

ye < 1+ vy,

Yq < 0+ yy:

Y, < 0+ y(0.2y.+y,)

Y3 < 0+ vy,

V3 S O+Y(0.5Y5+0.5Ve)  pinrunction®
Y, < 0+ yy, Lecture Note #2, Slide 10
Y, < 0+ y(0.33y,+0.33y,+0.33y,)

y; < 0+ vy,

y; < 0+ y(0.25y,+0.25y,+0.25y.+0.25y,)



The LP Formulation in General
* Ingeneral, lety €R™ represent the expected present cost-to-go
values of the m states, respectively, for a given policy. Then, the
cost-to-go vector of the optimal policy, with the discount factor
Y, by Bellman’s Principle is a Fixed Point:

Yi = min{Cj Ty p}y’ Je ALV,

jy=argmin{c, +yp;y, je A} Vi
* Such a fixed-point computation can be formulated as an LP

max Z Vi
i

st. Yis¢+ty p]Ty, Vj € A;; Vi.
* The maximization is trying to pushing up each yi to the highest

possible so that it equal to min-argument. When the optimal y
is found, one can then find the index of the original optimal
action/policy using argmin.



Tic-Tac-Toe Game Against a Random Player
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States/Actions of Tic-Tac-Toe Game

* Each State is a configuration of “cross” and “circle” locations
* Each Action at a state is to place a “cross” at an empty square

* After an action being taken at a state, the probability distribution
of transferring to a new state at next time step is uniformly
placing “circle” at every empty squares

e The immediate cost associated

with each action is zero except

at the very end ...
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State-Action Costs of the End Time

Any action leading to win has cost -1
Any action leading to lose has cost 1
Any action leading to tie or undecided
has cost 0.
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