More Linear Programming Examples I

Yinyu Ye Stanford University and CUHKSZ (Sabbatical Leave) Currently Visiting CUHK and HK PolyU https://web.stanford.edu/class/msande211x/handout.shtml

Chapter 1.1, 1.2, 2.1, 2.2, Appendices A, B&D in Textbook

LP Example 5: Support Vector Machine

Given two sets of points (rad and blue), find a line/plane to separate them,

x is the normal direction or slope vector and x_0 is the intersect Find a line to **strictly** separate greens and reds

LP Example 5: Is Strict Separation Possible?

$$a_i^T x + x_0 > 0, \forall i$$
$$b_j^T x + x_0 < 0, \forall j$$

Are there x and x_0 such that the following (open) inequalities are all satisfied

$$\begin{vmatrix} a_i^T x + x_0 \ge \varepsilon, \forall i \\ b_j^T x + x_0 \le -\varepsilon, \forall j \end{vmatrix}$$

Are there x and x_0 such that the following inequalities are all satisfied for arbitrarily small ε .

$$a_i^T x + x_0 \ge 1, \forall i$$
$$b_j^T x + x_0 \le -1, \forall j$$

Divide x and x_0 by ε ., the problem can be equivalently reformulated.

This is a special LP, called linear feasibility problem.

LP Example 5: Strict Separation is Impossible

minimize { $\sum_{i} \max(1 - a_{i}^{T}x - x_{0}, 0) + \sum_{j} \max(b_{j}^{T}x + x_{0} + 1, 0)$ }

Supporting Vector Machine Revisited

How to Linearize the Max Function

Introduce an auxiliary variable *w*

$$\max_{j=1,\dots,m} \{\sum_{i} a_{ij} x_i\} = w$$

Relax it to linear inequalities

$$\sum_{i} a_{ij} x_i \le w, j = 1, \dots, m$$

If *w* is minimized, the equality must hold

Supporting Vector Machine with High-Order Information

X is the normal direction or slope vector of Second Moment of Data-Points This would produce a Quadratic Curve If X is required to be Positive Definite, the Curve becomes an Ellipsoid.

LP Example 6: Air Traffic Control

Boeing

CNN

Oakland Center

ETMS data courtesy of NASA Ames

Air Traffic Landing Control

- Air flight j, j = 1, ..., n, must arrive at the airport within the time interval $[a_j, b_j]$ in the order of 1, 2, ..., n.
- The airport wants to find the actual arrival time for each air plane such that the narrowest metering time (inter-arrival time between two consecutive airplanes) is the greatest.
- Let: t_i be the arrival time of flight *j*. Then

maximize
$$[\min_{j=1,\dots,n-1} \{t_{j+1} - t_j\}]$$

s.t. $a_j \le t_j \le b_j, j = 1,\dots,n.$
This is not an LP problem!

How to Linearize the Min-Function

Introduce an auxiliary variable Δ

$$\min_{j=1,...,n-1} \{ t_{j+1} - t_j \} = \Delta$$

Relax it to linear inequalities

$$t_{j+1} - t_j \ge \Delta, \qquad j = 1, ..., n - 1.$$

If Δ is maximized, the equality must hold

$$\begin{array}{ll} \max & \Delta \\ \text{s.t.} & a_j \leq t_j \leq b_j, j = 1, \dots, n, \\ & t_{j+1} - t_j - \Delta \geq 0, j = 1, \dots, n-1. \end{array}$$

Yinyu Ye, Mini-course Lecture Notes #2

This is an LP problem!

LP Example 7: Mechanism for Information Market

- A place where information is aggregated via market for the primary purpose of forecasting events.
- Why:
 - Wisdom of the Crowds: Under the right conditions groups can be remarkably intelligent and possibly smarter than the smartest person. James Surowiecki
 - Efficient Market Hypothesis: financial markets are "informationally efficient", prices reflect all known information
- Market for Betting the World Cup Winner
 - Assume 5 teams have a chance to win the World Cup: Argentina, Brazil, Italy, Germany and France

Pari-mutual Market Model: Double Auction

• Example: Pari-mutual Horseracing Betting

Winners earn \$2 per bet plus stake back: Winners have stake returned then divide the winnings among themselves

Central Organization of the Market

Centralized Market Maker

- Introduce a market maker who will accept or reject orders received from participants/traders
- Market maker may be exposed to some risk
- **Problem:** How should the market maker fill orders in such a manner that he is not exposed to any financial risk?
- Belief-based?
 - Central organizer will determine prices for each state based on his beliefs of their likelihood
 - This is similar to the manner in which fixed odds bookmakers operate in the betting world
 - Generally not self-funding
- Pari-mutuel
 - A self-funding technique popular in horseracing betting.

More Abstract Market Model

- Market for World Cup Winner
 - We'd like to have a standard payout of \$1 per share if a participant has a winning order.
- List of Combinatorial Orders

Order	Price Limit π	Quantity Limit q	Argentina	Brazil	Italy	Germany	France
1	0.75	10	1	1	1		
2	0.35	5				1	
3	0.40	10	1		1		1
4	0.95	10	1	1	1	1	
5	0.75	5		1		1	

Market maker: Order fill - how many shares to sell for each order?

More Abstract Market Model

- Given *m* states that are mutually exclusive and exactly one of them will be realized at the maturity.
- An order is a bet on one or a combination of states
 - $(a_{i1}, a_{i2}, ..., a_{im})$: the entry value is 1 if the jth state is included in the winning basket and 0 other wise.
- with a price limit
 - π_i : the maximum price the participant is willing to pay for one share of the order
- and a share quantity limit
 - $-q_i$: the maximum number of shares the participant is willing to buy.
- A contract agreement so that on maturity it is worth a notional one dollar per share if the order includes the winning state and worth 0 otherwise.

Pari-mutual Market Model 2

- Let x_i be the number of shares sell to order *i*.
- The revenue collected for the sale:

$$\sum_{i} \pi_i x_i \qquad \boxed{0.75x_1 + \ldots + 0.75x_5}$$

Order fill	Price Limit π	Quanti ty Limit q	Argen tina	Bra zil	Italy	Germ any	Franc e
x1	0.75	10	1	1	1		
x2	0.35	5				1	
x3	0.40	10	1		1		1
x4	0.95	10	1	1	1	1	
x5	0.75	5		1		1	

- The cost depends on which team wins:
 - If jth team wins (for example, if Brazil wins in the example):

$$\sum_i a_{ij} x_i$$

$$x_1 + x_4 + x_5$$

• We consider the worse case cost and profit

$$\max_{j=1,\dots,m} \{\sum_{i} a_{ij} x_i\} \longrightarrow \max (\sum_{i} \pi_i x_i - \max_{j=1,\dots,m} \{\sum_{i} a_{ij} x_i\})$$

LP Pari-mutual Market Mechanism

This is an LP problem; later you will learn that the optimal dual solution gives prices of each team

Compact Coefficients

Order	Price Limit π	Quantity Limit q	Argentina	Brazil	Italy	Germany	France
			()
1	0.75	10	1	1	1		
2	0.35	5				1	
3	0.40	10	1		1		1
4	0.95	10	1	1	1	1	
5	0.75	5		1		1	
			(J
	Π	q			А		

Model in Matrix Form

$$\max \quad \pi^{T}x - w$$
s.t.
$$A^{T}x - 1w \le 0,$$

$$x \quad \le q,$$

$$x \quad \ge 0$$
1: vector of all ones

One can then use a general LP solve to solve any instance of LP problems

World Cup Betting Results and Consensus Probabilities

Orders Filled

Order	Price Limit	Quantity Limit	Filled	Argentina	Brazil	Italy	Germany	France
1	0.75	10	5	1	1	1		
2	0.35	5	5				1	
3	0.40	10	5	1		1		1
4	0.95	10	0	1	1	1	1	
5	0.75	5	5		1		1	

State Prices

	Argentina	Brazil	Italy	Germany	France
Price	0.20	0.35	0.20	0.25	0.00