Optimization Models and Formulations I

Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A.

https://canvas.stanford.edu/courses/179677

Read Chapter 1.1, 1.2, 2.1, 2.2, Appendices A, B&D in Text-Book (hard copies would be available in the Book Store)

1st Day Questions

- My CA team: Xuhui, Chunlin, J.T., Eva, Celia
- Websites: Canvas

https://canvas.stanford.edu/courses/142617

- 5 Homework assignments (count the best 4), One in-class Midterm, one team project
 - 40% *H + 30% *M + 30% *P
 - No difference on taking 3 or 4 units
- No formula for cutoff between A/B etc.
- The more fun we all have, the more A's we will give out.
- Textbook: Linear and Nonlinear Programming (LY 5th edition)
- This is 111/211; take 111X/211X for more advanced levels
- The software use will help: Solvers in Matlab, R, Python or other public free software.
- Form a "diversified" study group
- Selected Friday's problem sessions (will be taped)
- Students with OAE, extra time for the exam

David G. Luenberger Yinyu Ye

Operations Research & Management Science

International Series in

Linear and Nonlinear Programming

Fifth Edition

🖄 Springer

Mathematical Optimization Models

- Often consider the common quantitative model of data/decision/management science & engineering:
 - Maximize or Minimize f(x)for all $x \in$ some set X
- Decision variables x, Objective function f(x), Constraint set X
- Applications in:
 - Applied Science, Engineering, Economics, Finance, Medicine, Statistics, Business
 - General Decision and Policy Making
- The famous Eighteenth Century Swiss mathematician and physicist Leonhard Euler (1707-1783) proclaimed that "...nothing at all takes place in the Universe in which some rule of maximum or minimum does not appear."

The Prototypical Optimization Problems

Max (or Max):

s.t. :

$$f(\mathbf{x})$$

$$h_{1}(\boldsymbol{x}) = 0$$
...
$$h_{m}(\boldsymbol{x}) = 0$$

$$g_{1}(\boldsymbol{x}) \leq 0$$

 $g_r(\mathbf{x}) \leq 0$ The Function could be: x_1+2x_2 , $x^2+2xy+2y^2$, $xln(x)+e^y$, $|x|+max\{x,y\}$, etc **Linear Programming/Optimization**: all functions are linear/affine

- Decision Variables $x \in \mathbb{R}^n$, yet to be decided, form a solution; Objective function f(x)
- Constraints: equality, inequality; feasible solutions: meet all constraints
- Optimal solution x^* : feasible and achieve the best possible objective value $f(x^*)$

3 Main Categories Covered in this Course

• Linear Optimization (Programming)

- Problem Formulation, Optimality Conditions
- Search Algorithms, e.g., Simplex and Interior-Point Algorithms
- Unconstrained Nonlinear Optimization
 - Problem Formulation, Optimality Conditions
 - 1st order methods, gradient method; 2nd order methods, Newton
- Constrained Nonlinear Optimization
 - Problem Formulation, Lagrangian Functions, Optimality Conditions
 - 1st order, gradient projection, sequential LP,; 2nd order, sequential Newton
 - Duality Theories,

Other Classifications:

Quadratic, Convex, Integer, Mixed-Integer, Binary, etc.

Issues in Optimization

- How to formulate a real-life problem
 - Three steps: variables, objective, constraints
- How to recognize a solution being optimal?
 - Easy to check
- How to measure algorithm effciency?
 - Convergence speed
 - Local Convergence speed
- Insight more than just the solution?
 - Solution structure properties
 - Sensitivity analysis
 - Alternate formulations

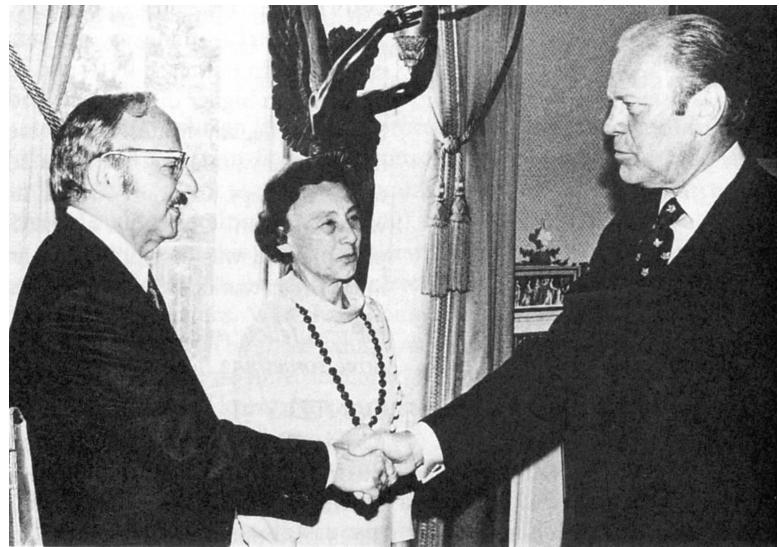
What do you learn?

- Models the Art: intuition and common sense
 - How formulate real problems using quantitative models
- Theory the Science: theorems, geometries and universal rules
 - Necessary and Sufficient Conditions that must be true for the optimality of different classes of problems.
- Algorithms the Engineering: algorithms, methodologies and software tools
 - How we apply the theory to robustly and efficiently solve problems and gain insight beyond the solution.
- Applications AI, Machine Learning and Data Science
 - Logistic Regression, SVM, the Wasserstain barycenter, Reinforced learning/MDP, Information market,...

Start with Linear Programming

- Why do we study LP's
 - Not just because solving non-linear problems are difficult
 - But because real-world problems are often formulated as linear equations and inequalities
 - Either because they indeed are linear
 - Or because it is unclear how to represent them and linear is an intuitive compromise
 - A stepping stone for solving more complicated nonlinear optimization problems, which you would see later.

... and National Medal of Science



Optimization Problem Modeling/Formulation

Modeling Process

- Understand the problem
- Collect relevant information and data
- Identify and define the decision variables
 - The role of variables
 - How they related to data
- formulate the objective function
 - Logic relation to Data and Decision Variables
- Isolate and formulate the constraints
 - From physical conditions, regularity limits, common senses

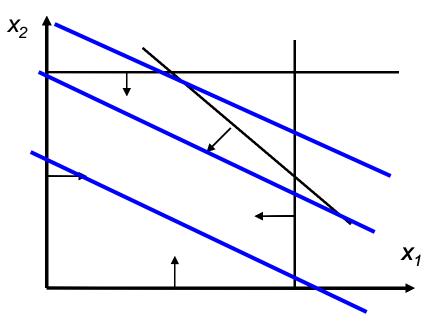
All based on Science, Arts, and Intuitions....

LP Example 1: Resource Allocation/Production Management

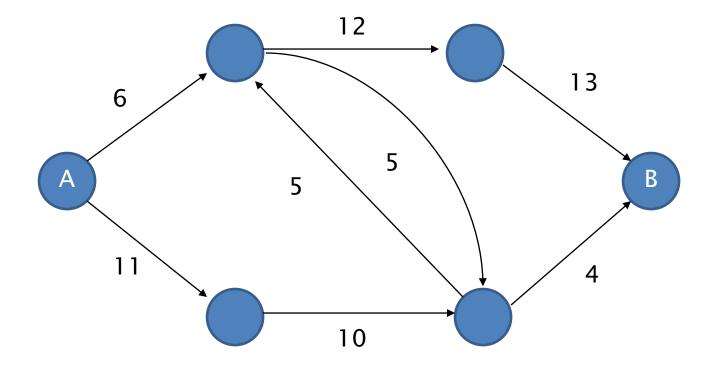
The Wyndor Glass Co. is a producer of high-quality glass products. It has three plants. Aluminum frames and hardware are made in Plant 1, wood frames are made in Plant 2, and Plant 3 is used to produce glass and assemble the products. Wyndor produces two products which require the resources of the three plants as follows:

Plant	Aluminum	Wood	Resources
1	1	0	100
2	0	2	200
3	1	1	150
Unit Profit	\$1000	\$2000	

$$\begin{array}{ll} \max & x_1 + 2x_2 \\ \text{s.t.} & x_1 \leq 1, \\ & 2x_2 \leq 2, \\ & x_1 + x_2 \leq 1.5, \\ & x_1, x_2 \geq 0 \end{array}$$

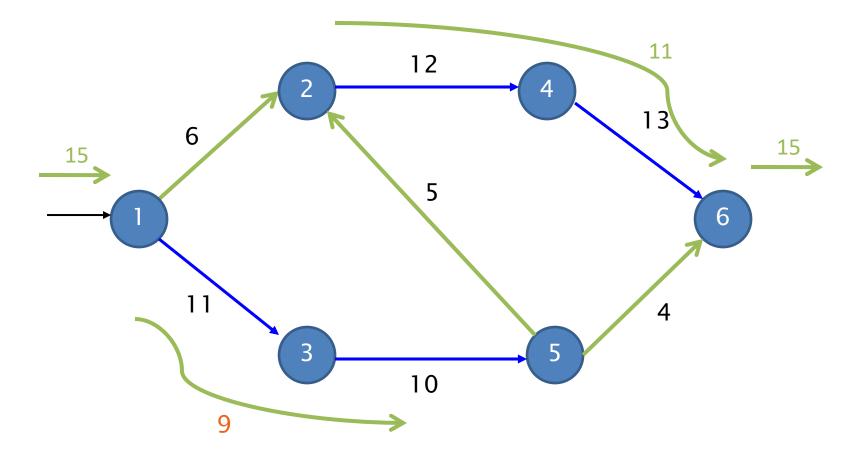


LP Example 2: Maximum Flow



How much flow can travel from A to B, given that each of the directed connecting routes have flow limits/capacities?

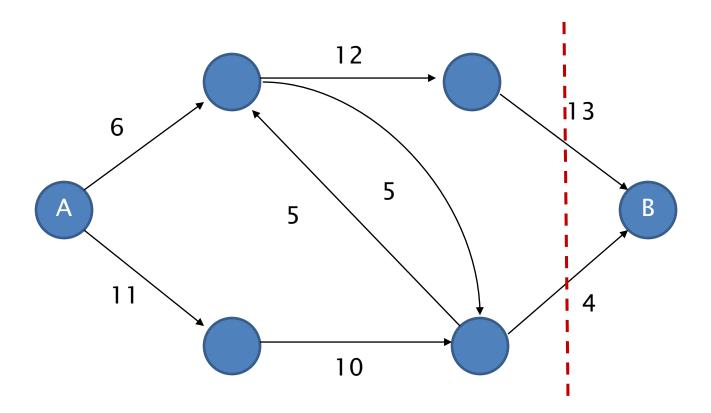
Maximum Flow by Inspection



How to certify that 15 is maximal?

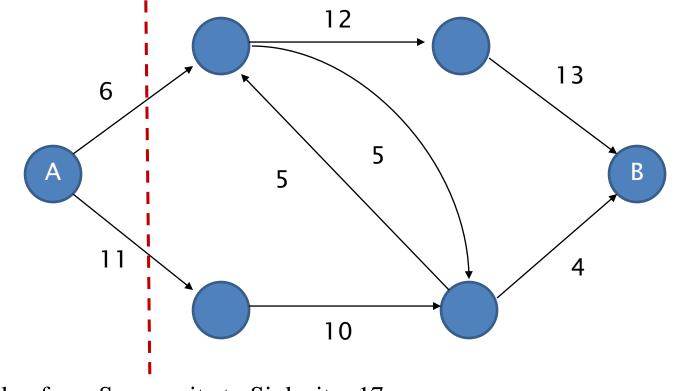
Yinyu Ye, Stanford, MS&E211 Lecture Notes #1

Cut in Maximum Flow I



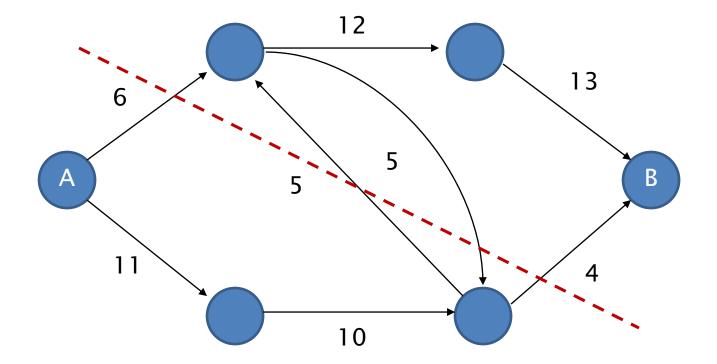
Cut value from Source site to Sink site=17

Cut in Maximum Flow II



Cut value from Source site to Sink site=17

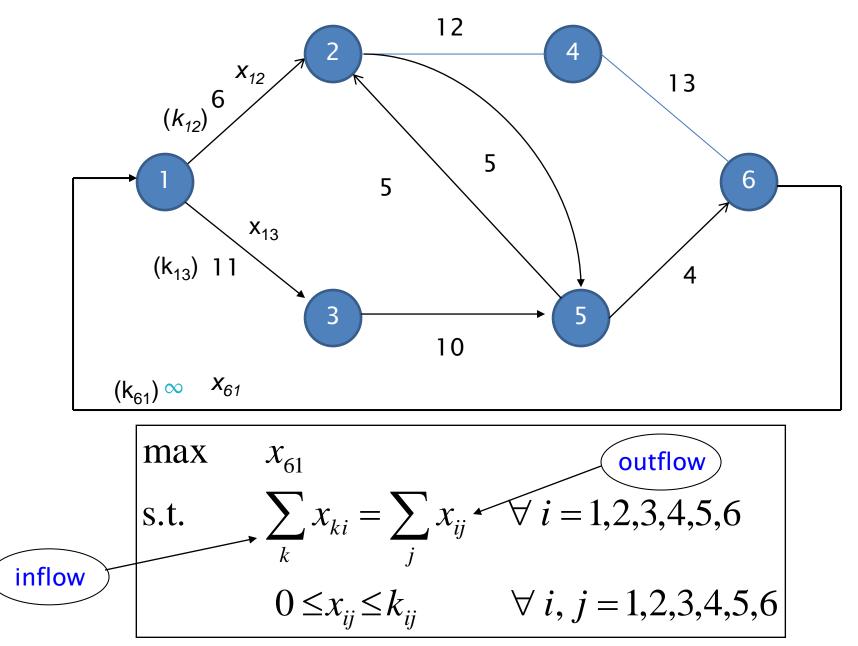
Cut in Maximum Flow III



Cut value from Source site to Sink site=15

Data points classification application in Machine Learning and Data Science

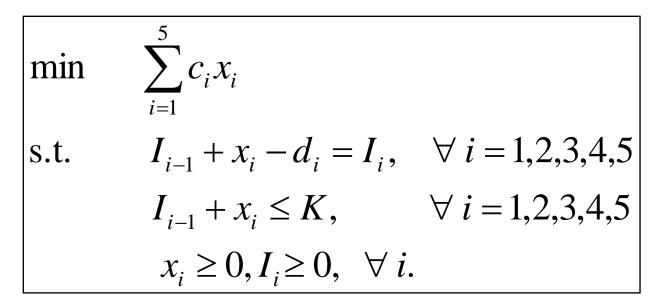
Yinyu Ye, Stanford, MS&E211 Lecture Notes #1



Yinyu Ye, Stanford, MS&E211 Lecture Notes #1

LP Example 3: Electric Vehicle Charging Schedule and Storage Control

	Period 1	Period 2	Period 3	Period 4	Period 5
Price (\$)	1.25 (c ₁)	1.35 (c ₂)	1.25 (c ₃)	1.10 (c ₄)	1.05 (c ₅)
Demand (kw)	60 (d ₁)	110 (d ₂)	100 (d ₃)	40 (d ₄)	0 (d ₅)
Charging (kw)	x ₁	x ₂	x ₃	x ₄	x ₅
Inventory (I ₀)	I ₁	l ₂	l ₃	I ₄	I ₅

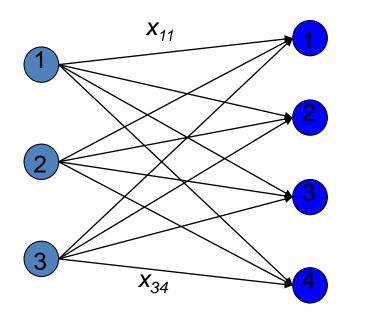


When Discharge is Allowed

	Period 1	Period 2	Period 3	Period 4	Period 5
Price (\$)	1.25 (c ₁)	1.35 (c ₂)	1.25 (c ₃)	1.10 (c ₄)	1.05 (c ₅)
Demand (kw)	60 (d ₁)	110 (d ₂)	100 (d ₃)	40 (d ₄)	0 (d ₅)
Charging (kw)	x ₁	x ₂	x ₃	x ₄	x ₅
Inventory (I ₀)	I ₁	l ₂	l ₃	I ₄	I ₅

LP Example 4: Transportation and Assignment

	Retailer 1	Retailer 2	Retailer 3	Retailer 4	SUPPLY
Warehouse 1	12 (c ₁₁)	13	4	6	500 (s ₁)
Warehouse 2	6	4	10	11	700 (s ₂)
Warehouse 3	10	9	12	14 (c ₃₄)	800 (s ₃)
DEMAND	400 (d ₁)	900 (d ₂)	200 (d ₃)	500 (d ₄)	2000 (s ₄)



min
$$\sum_{i=1}^{3} \sum_{j=1}^{4} c_{ij} x_{ij}$$
Abstract Model
s.t.
$$\sum_{j=1}^{4} x_{ij} = s_i, \quad \forall i = 1, 2, 3$$

$$\sum_{i=1}^{3} x_{ij} = d_j, \quad \forall j = 1, 2, 3, 4$$

$$x_{ij} \ge 0, \qquad \forall i, j$$

Inventory Planning: s is part of the decision vars.

Machine Learning: The Wassestein Barycenter Problem I

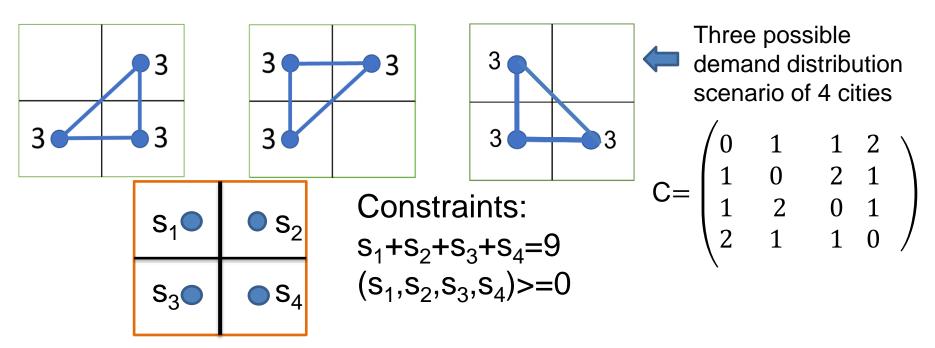
The minimal transportation cost in Data Science is called the Wasserstein distance between a supply distribution and a demand distribution. $WD(s, d_k)=$

The **Wasserstein Barycenter Problem** is to find a distribution/points such that the sum of its Wasserstein distances to each of a set of distributions/points would be minimized

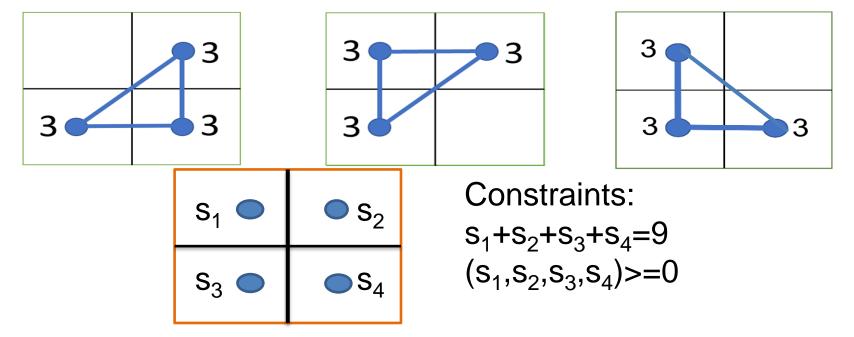
 $min_s \sum_k WD(s, d_k)$ s.t. total mass constraint

$$\min \sum_{i=1}^{N} \sum_{j=1}^{N} c_{ij} x_{ij}$$

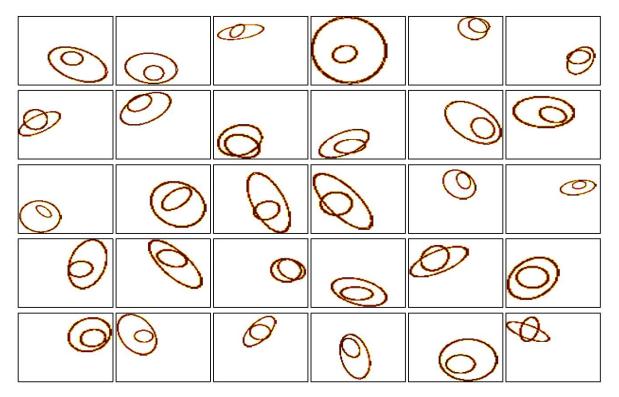
s.t.
$$\sum_{\substack{j=1\\N}}^{N} x_{ij} = s_i, \quad \forall \ i = 1, \dots, N$$
$$\sum_{\substack{i=1\\N}}^{N} x_{ij} = d_{kj}, \quad \forall \ j = 1, \dots, N$$
$$x_{ij} \ge 0, \quad \forall \ i, j$$



Machine Learning: The Wassestein Barycenter Problem II



Machine Learning: The Wassestein Barycenter Problem III



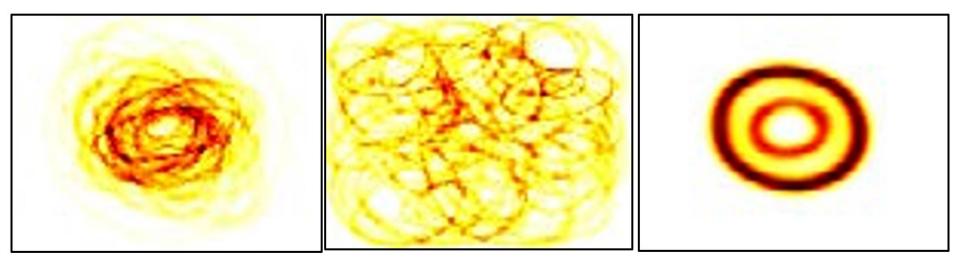
What is the best ``mean or consensus'' image from a set of images (pixel distributions)?

- Simple average
- Simple average after re-centering
- The Wasserstein Barycenter of the set of images (self re-center and rotation)

Machine Learning: The Wassestein Barycenter Problem IV

The simple avarage of n points is $\mathbf{s} = (\sum_{k} \mathbf{d}_{k})/n \text{ or min}_{\mathbf{s}} \sum_{\mathbf{k}} (|| \mathbf{s} - \mathbf{d}_{\mathbf{k}} ||_{2})^{2}$

The **Wasserstein Barycenter Problem** is to find a distribution/points such that the sum of its Wasserstein distances to each of a set of distributions/points would be minimized (self re-center and rotation).



Simple average after re-centering

Simple average

the Barycenter image