
MS&E 111X & 211X

Introduction to Optimization (Accelerated)

Homework 4

Course Instructor: Yinyu Ye

Due Date: 11:59 pm Nov 30, 2021

Please submit your homework through Gradescope. If you haven’t already been added to Grade-
scope, you can use the entry code 2RJNKV to join. Please note: late homework will not be
accepted. Each problem will be graded out of 10 points.
Some problems allow group work. Groups should be no larger than 4. If you decide to work
together, provide the names of those you worked with.

Problem 1

For parts a)-c) below, label them as True or False. If true, provide a short reason; if false, provide
reasoning or a counter example.

a) True or False: The simplex method (with cycle breaking rules) for a general linear program
with n variables always converges to the optimal solution after a finite amount of steps and
it takes at most a polynomial number of steps in n to converge.

b) Consider the following optimization problem:

min f(x1, x2) = − log(x1x2) + x21 + x2 + 3(x1 − x2)4.

True or False: The gradient descent procedure with line search on this problem is guaranteed
to converge to the global minimum.

c) Consider the following optimization problem:

min f(x1, x2) = (x1 − 1)2 + (x2 − 2)2.

True or False: Newton’s method on this problem will converge to the global minimum faster
than the gradient descent method provided that we use line search.

Solution:
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a) False. In the worst case, the simplex method can take an exponential number of steps to
reach the optimal solution.

b) True. The gradient descent procedure converges in this case since the objective function is
convex. It will converge to the global minimum.

c) False. Since the given function is quadratic, we know Newton’s method will converge in
exactly 1 step. The given function also represents a circle with center at (1, 2). The gradient
at any point on the level set of this objective function, will pass through the center of the
circle. The center of the circle is the global minimum. Thus, by choosing an appropriate step
size in line search, the gradient method will also converge in exactly 1 step. Thus, the rate of
convergence of Newton’s method will be equal to that of the gradient method.

Problem 2

Solve the transportation problem described in pages 12-14, Lecture 10 using the simplex method.
Specifically, write down the shadow prices, reduced costs, the termination test and the new BFS
for each iteration. Clearly state your optimal solution at the end. [Hint: You can begin with the
BFS provided in page 21, Lecture 10.]

Solution:
The transportation problem is

min
∑
i

∑
j

cijxij

subject to
∑
j

xij = si, ∀i = 1, . . . ,m

∑
i

xij = dj , ∀j = 1, . . . , n

xij ≥ 0, ∀i, j

where m = 3, n = 4, and

c =

12 13 4 6
6 4 10 11
10 9 12 4

 , s =

500
700
800

 , d =


400
900
200
500

 .
We begin the initial BFS found in the lecture notes:

x11 = 400

x12 = 100

x22 = 700

x32 = 100

x33 = 200

x34 = 500
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and xij = 0 elsewhere. After running the simplex algorithm for two iterations, you should find the
optimal solution

x11 = 300

x13 = 200

x22 = 700

x31 = 100

x32 = 200

x34 = 500

and xij = 0 elsewhere.

Problem 3

Recall the logistic regression problem in Homework 2 Problem 6 whose objective is to minimize the
function

f(x, x0) =
∑
i

log(1 + exp(−aT
i x− x0)) +

∑
i

log(1 + exp(bTi x + x0))

with training data a1 = (0; 0), a2 = (1; 0), a3 = (0; 1), b1 = (0; 0), b2 = (−1; 0), b3 = (0;−1), where
ai are points we negatively label and bi are points we positively label. We consider numerically
solving this problem using gradient descent. You are free to use whatever programming language
you prefer, but you cannot use any off-the-shelf implementation such as scipy.optimize in python.
You may work in teams for this problem.

a) We fix step size as 0.1 and we stop iterating at the earliest round when the Euclidean norm of
gradient drops below 10−3 or we reach 1000th round. Write code for fixed step size gradient
descent for the problem in Homework 2 Problem 6. You are free to choose your starting point

of (x(0), x
(0)
0 ). After running the algorithm, please produce and report the following 2 plots:

1) horizontal axis: the iterations k, vertical axis: Euclidean norm of [x;x0]

2) horizontal axis: the iterations k, vertical axis: the value of negative log-likelihood func-

tion f(x(k), x
(k)
0 );

b) Modify your code to add the regularization proposed by Homework 2 Problem 6 Part (c),
which is

min f(x, x0) + µ||x||2.

Produce the same plots as Part (a) with µ1 = 0.01 and µ2 = 1 (i.e. please report 4 plots for
this subsection, 2 plots for each regularization scale).

c) Compare the results in Parts (a) and (b) and summarize what effects of regularization you
notice.

3



d) Attach/print your code for implementations of this problem.

Solution:

a) See Figures 1 and 2. We chose initial point (x(0), x
(0)
0 ) = (0, 0, 0)

Figure 1: Norm of gradient descent iterates
on unregularized problem

Figure 2: Unregularized objective value

b) See Figures 3, 4, 5, 6. We chose initial point (x(0), x
(0)
0 ) = (0, 0, 0)

Figure 3: Norm of gradient descent iterates
on regularized problem, µ1 = 0.01

Figure 4: Regularized objective value, µ1 =
0.01

c) Gradient descent on the unregularized problem only terminates because it meets the maximum
iterate, not because the norm of its gradient reaches the threshold. Even though the objective
plateaus near the minimum, the norm of the solution keeps increasing without bound. The
regularized problem with µ = 0.01 reaches the termination criteria before the maximum
iterate with a minimum objective value comparable to the unregularized optimal objective
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Figure 5: Norm of gradient descent iterates
on regularized problem, µ1 = 1

Figure 6: Regularized objective value, µ1 =
1

and also has a plateauing solution norm. Likewise, the regularized problem with µ = 1
terminates early, however its objective is far from the optimum and in fact it increases after
a few iterations. This shows that moderate regularization helps in controlling the size of the
solution and in achieving faster convergence, but high regularization can be more detrimental
than no regularization.

d) Omitted.

Problem 4

Consider the following variant of the portfolio management quadratic program in Lecture 12 Slide
16:

min x21 + 2x22 + 3x23 − x1x2 − x2x3 − x1x3 − x1 − 2x2 − 3x3

subject to x1 + x2 + x3 = 1

We consider numerically solving this problem using Newton’s method. You are free to use what-
ever programming language you prefer, but you cannot use any off-the-shelf implementation such
as scipy.optimize in python. Write code to perform Newton’s method and report your final
(x1, x2, x3).

Solution:
In standard quadratic form, this problem is

min
1

2
xTQx+ cTx

subject to Ax = b
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where

Q =

 2 −1 −1
−1 4 −1
−1 −1 6

 , c =

−1
−2
−3

 , A =
(
1 1 1

)
, b =

(
1
)
.

Therefore, the Newton update is
x′1
x′2
x′3
y′

 =


x1
x2
x3
y

−∇g(x1, x2, x3, y)−1g(x1, x2, x3, y)

where

g(x1, x2, x3, y) =

(
Q −AT

A 0

)
x1
x2
x3
y

+

(
c
−b

)

∇g(x1, x2, x3, y) =

(
Q −AT

A 0

)
.

Plugging in, we see that the initial point does not matter and we get the optimal solution with a
single Newton update 

x′1
x′2
x′3
y′

 = −
(
Q −AT

A 0

)−1(
c
−b

)
=


0.2535
0.3521
0.3944
−1.2394

 .

Problem 5

Consider the LP problem

minimize x1 + x2

subject to x1 + x2 + x3 = 1,

(x1, x2, x3) ≥ 0.

a) Formulate the barrierred problem using a logarithmic barrier and derive the KKT optimality
conditions for the barrierred problem. Resolve the optimal solution in terms of the barrier
parameter µ : x∗1(µ), x∗2(µ) and x∗3(µ).

b) The trajectory defined by (x∗1, x
∗
2, x
∗
3)(µ) is known as the central path to the optimum of the

problem. Find the location of 3 points on this path by evaluating the solution to the barrierred
problem for µ → ∞, µ = 1, and µ → 0. Show that the solution obtained with µ → 0 is the
optimal solution of the original problem using LP duality.
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Solution:

a) The barrierred problem takes the following form:

min x1 + x2 − µ(log x1 + log x2 + log x3)

subject to x1 + x2 + x3 = 1

x1, x2, x3 ≥ 0

where µ ≥ 0. Deriving the KKT conditions, we get that a point on the central path must
satisfy:

1− µ

x1
+ λ = 0

1− µ

x2
+ λ = 0

− µ

x3
+ λ = 0

x1 + x2 + x3 = 1

This implies the following forms for x:

x∗1 =
µ

1 + λ

x∗2 =
µ

1 + λ

x3 =
µ

λ

and, plugging these into the constraint x∗1 + x∗2 + x∗3 = 1, we get

λ =
(3µ− 1) +

√
9µ2 − 2µ+ 1

2

because x3 ≥ 0 enforces that λ > 0. Plugging back to (x∗1, x
∗
2, x
∗
3) we will get (x∗1(µ), x∗2(µ), x∗3(µ)).

b) As µ→∞, (x∗1, x
∗
2, x
∗
3) = (1/3, 1/3, 1/3).

As µ = 1, (x∗1, x
∗
2, x
∗
3) = (2−

√
2

2 , 2−
√
2

2 ,
√

2− 1).

As µ→ 0, (x∗1, x
∗
2, x
∗
3) = (0, 0, 1).

Note that the primal objective using (x1, x2, x3) = (0, 0, 1) is 0. Since the dual problem is

max z

subject to z ≤ 1

z ≤ 1

z ≤ 0

whose optimal solution is obviously z = 0 with objective value 0. Therefore, we have zero
duality gap with (x1, x2, x3, z) = (0, 0, 1, 0). Hence the central path leads to the optimal
solution.
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