
MS&E 111X & 211X

Introduction to Optimization (Accelerated)

Homework 3

Course Instructor: Yinyu Ye

Due Date: 11:59 pm Nov 4, 2021

Please submit your homework through Gradescope. If you haven’t already been added to Grade-
scope, you can use the entry code 2RJNKV to join. Please note: late homework will not be
accepted. Each problem will be graded out of 10 points.
Some problems allow group work. Groups should be no larger than 4. If you decide to work
together, provide the names of those you worked with.

Problem 1

The Cobb-Douglas production function is widely used in economics to represent the relationship
between inputs and outputs of a firm. It takes on the form Y = ALαKβ where Y represents output,
L labor and K capital. α and β are constants that determine how production is scaled. We find
that the Cobb-Douglas function can be applied to model firm utility. Consider the following utility
maximization problem:

max u(x) = xα1x
1−α
2

subject to p1x1 + p2x2 ≤ w
x1, x2 ≥ 0

where 0 < α < 1 is fixed and p and w represent a given price and budget respectively. This is a
particular instance of Cobb-Douglas utility. Assume that w > 0 and p > 0.

a) Perform a logarithmic transformation to find an equivalent maximization problem. Explain
why this transformation leads to an equivalent problem.

b) Write the KKT conditions for the transformed problem and find an explicit solution for x as
a function of p, w and α. Are these conditions sufficient for optimality?

c) Find the corresponding Lagrangian multiplier, λ, in terms of p, w and α. Describe an inter-
pretation for λ.

d) Suppose w = 100, p1 = 1, p2 = 2, and α = 0.2, find the optimal consumption bundle x1 and
x2.
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Solution:

a) First, note that with w > 0 and p > 0, a zero solution is clearly not optimal so we can take
the log excluding potential solutions at zero. The log-transformed problem is

max u(x) = α log x1 + (1− α) log x2

subject to p1x1 + p2x2 ≤ w
x1, x2 ≥ 0

Logarithmic functions are monotonous. Therefore, the optimal solution to the transformed
problem is the same as the optimal solution to the original problem.

b) Lagrange multipliers:

λ : p1x1 + p2x2 ≤ w
s1 : x1 ≥ 0

s2 : x2 ≥ 0

Lagrangian:

L(x1, x2, λ, s1, s2) = α log x1 + (1− α) log x2 − λ(p1x1 + p2x2 − w)− s1x1 − s2x2

KKT conditions:

p1x1 + p2x2 ≤ w
x1, x2 ≥ 0

α

x1
− p1λ− s1 = 0

1− α
x2

− p2λ− s2 = 0

λ(p1x1 + p2x2 − w) = 0

s1x1 = 0

s2x2 = 0

λ ≥ 0

s1, s2 ≤ 0

Since the optimal consumption bundle (x1, x2) has to be positive and sixi = 0, we have

x1 =
α

p1λ

x2 =
1− α
p2λ
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Therefore λ > 0. From λ(p1x1+p2x2−w) = 0, we have p1x1+p2x2 = w. Using the equations
above, we yield

x1 =
αw

p1

x2 =
(1− α)w

p2

The objective function is concave, hence these conditions are necessary and sufficient for
optimality.

c)

λ =
1

w

The Lagrangian Multiplier represents the increase in utility that corresponds with a marginal
increase in wealth.

d) Plugging in the numbers, we yield the optimal consumption bundle (x1, x2) = (20, 40).

Problem 2

Consider the optimization problem

min x21 + 4x22

subject to x21 + 2x22 ≥ 4

a) Find all points that satisfy the KKT conditions.

b) Apply the second order condition to determine the whether or not the KKT solutions are
local minimizers or maximizers or neither.

Solution:

a) The Lagrangian of this function is

L(x1, x2, y) = x21 + 4x22 − y(x21 + 2x22 − 4)

where y ≥ 0. The KKT conditions specify that the local optima satisfy the following:

stationarity

∇L(x1, x2, y) =

( ∂L
∂x1
∂L
∂x2

)
=

(
2x1(1− y)
4x2(2− y)

)
=

(
0
0

)
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primal feasibility

x21 + 2x22 − 4 ≥ 0

dual feasibility

y ≥ 0

and complementary slackness

y(x21 + 2x22 − 4) = 0.

The points that satisfy these necessary conditions are

P1 : y = 1, x1 = 2, x2 = 0

P2 : y = 1, x1 = −2, x2 = 0

P3 : y = 2, x1 = 0, x2 =
√

2

P4 : y = 2, x1 = 0, x2 = −
√

2.

Note that x1 = 0 and x2 = 0 is not a solutions even though it is a stationary point because
it does not satisfy primal feasibility.

b) The Hessian of the Lagrangian is

∇2L(x1, x2, y) =

(
2(1− y) 0

0 4(2− y)

)
This matrix is positive semi-definite if and only if y ≤ 1. Therefore, points P1 and P2 are local
minima of the Lagrangian and thus of the original program. At points P3 and P4, the Hessian
is negative semi-definite which makes them local maxima for the unconstrained Lagrangian.
Note however that these points are not local maxima if the original program were set to be a
maximization problem with the same constraints.

Problem 3

Consider the maze run MDP problem in Problem 4 of Homework 1, also shown here in Figure 1.
In Homework 1, we formulated this problem as a linear program where the decision variables are
the cost-to-go-values of the decision states.

a) Write down the dual problem of this linear program, solve it using your favorite solver (in
teams), and give some interpretations about these dual variables.

b) Give an optimal policy for this Reinforcement Learning problem (Hint: use the dual optimal
solution and the complementarity conditions).

Solution:
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Figure 1: Modified Maze Run

Recall the linear program formulation of the problem:

max

5∑
i=0

yi

subject to y5 ≤ γy0
y4 ≤ 1 + γy5

y3 ≤ −0.8 + γy4

y3 ≤ γy5
y2 ≤ γy3
y2 ≤ γ(0.5y4 + 0.5y5)

y1 ≤ γy2
y1 ≤ γ(0.5y3 + 0.2y4 + 0.3y5)

y0 ≤ γy1
y0 ≤ γ(0.4y2 + 0.3y3 + 0.2y4 + 0.1y5)

where yi is the cost-to-go for state i for i = 0, . . . , 5 and γ = 0.7 is the discount factor. Associate
to each inequality in the primal problem a Lagrange multiplier

x5 : y5 ≤ γy0
x4 : y4 ≤ 1 + γy5

x3r : y3 ≤ −0.8 + γy4

x3b : y3 ≤ γy5
x2r : y2 ≤ γy3
x2b : y2 ≤ γ(0.5y4 + 0.5y5)

x1r : y1 ≤ γy2
x1b : y1 ≤ γ(0.5y3 + 0.2y4 + 0.3y5)

x0r : y0 ≤ γy1
x0b : y0 ≤ γ(0.4y2 + 0.3y3 + 0.2y4 + 0.1y5)
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where xir represents the multiplier for the constraint arising from taking the red action from state i
and xib represents the multiplier for the constraint arising from taking the blue action from state i
for i = 0, . . . , 3. States 4 and 5 only have one action so they only have one multiplier each associated
to them. These multipliers will be the decision variables of the dual problem.

The primal problem can be cast in standard form:

max cT y

subject to Ay ≤ b

where

c =


1
1
1
1
1
1

 , A =



−γ 0 0 0 0 1
0 0 0 0 1 −γ
0 0 0 1 −γ 0
0 0 0 1 0 −γ
0 0 1 −γ 0 0
0 0 1 0 −.5γ −.5γ
0 1 −γ 0 0 0
0 1 0 −.5γ −.2γ −.3γ
1 −γ 0 0 0 0
1 0 −.4γ −.3γ −.2γ −.1γ


, b =



0
1
−0.8

0
0
0
0
0
0
0


.

Then, the dual of this linear program is

min bTx

subject to ATx = c

x ≥ 0

where

x =



x5
x4
x3r
x3b
x2r
x2b
x1r
x1b
x0r
x0b


.

Dual variable xi represents the discounted number of times action i is taken by a policy. The
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solution to the dual problem is

x∗ =



3.3333
3.3333
3.3333
0.0000
3.3333
0.0000
3.3333
0.0000
3.3333
0.0000


The complementarity conditions state that either the constraint is active or the multiplier asso-
ciated to that constraint is equal to zero. Since the constraints in the linear program came from
maximization procedures of different actions, a constraint being active means that the maximum is
achieved at the associated action. Therefore, looking at the solution of the dual program, we can
determine the optimal policy to be

πi = arg max{xir, xib}

for i = 0, 1, 2, 3, that is,

π =


π0
π1
π2
π3

 =


r
r
r
r


where r is the red action and b is the blue action. And at states 4 and 5 there is only one action.

Problem 4

Consider a variant of the Two-Person Zero-Sum Matrix Game in Slides 2-4 of Lecture Note #8,
where the payoff matrix becomes:

P =

 4 −1 −4 −2
−2 1 4 2
1 −2 2 −4


a) Write down the linear program for Player Row.

b) Write down the dual of the above linear program.

c) Give interpretations of the dual problem (with respect to the meaning of the dual variables
and dual objective).

Solution:
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a)

min u

subject to u− (4y1 − 2y2 + y3) ≥ 0

u− (−y1 + y2 − 2y3) ≥ 0

u− (−4y1 + 4y2 + 2y3) ≥ 0

u− (−2y1 + 2y2 − 4y3) ≥ 0

y1 + y2 + y3 = 1

y1, y2, y3 ≥ 0

b)

max v

subject to v − (4x1 − x2 − 4x3 − 2x4) ≤ 0

v − (−2x1 + x2 + 4x3 + 2x4) ≤ 0

v − (x1 − 2x2 + 2x3 − 4x4) ≤ 0

x1 + x2 + x3 + x4 = 1

x1, x2, x3, x4 ≥ 0

c) xi represents the probability of choosing column i. These probabilities induce an expected
payoff to the row players. So v represents the minimum expected payoff among the row
players. Therefore, the dual problem maximizes the minimum expected payoff of the row
players.

Problem 5

Consider a variant of the Robust Portfolio Management Problem in Slides 19-23 of Lecture Note
#8, where constraints on x1, x2 become:

x1 + x2 = 1

3x1 − x2 ≥ 0

and constraints on µ1, µ2 become
µ1 + 3µ2 = 2

|µ1 − µ2| ≤ 1

a) Write its inner problem as a linear program.

b) For fixed x1 and x2 (under the constraints of x1 + x2 = 1, 3x1 − x2 ≥ 0), find the dual of the
inner problem, and solve dual problem.

c) Combine the objectives of the outer and inner problem into a joint single layer problem.
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Solution:

a) The inner problem given these constraints is

max − µ1x1 − µ2x2

subject to µ1 + 3µ2 = 2

|µ1 − µ2| ≤ 1

Note that |µ1 − µ2| ≤ 1 is equivalent to having µ1 − µ2 ≤ 1 and µ2 − µ1 ≤ 1. Thus the inner
problem is

max − µ1x1 − µ2x2

subject to µ1 + 3µ2 = 2

µ1 − µ2 ≤ 1

µ2 − µ1 ≤ 1

b) The Lagrangian of this problem is

L(µ1, µ2, y1, y2, y3) = −µ1x1 − µ2x2 − y1(µ1 + 3µ2 − 2)− y2(µ1 − µ2 − 1)− y3(µ2 − µ1 − 1)

= µ1(−x1 − y1 − y2 + y3) + µ2(−x2 − 3y1 + y2 − y3) + 2y1 + y2 + y3

where y1 is free and y2, y3 ≥ 0. The first-order conditions require that

∇µL(µ1, µ2, y1, y2, y3) =

[
−x1 − y1 − y2 + y3
−x2 − 3y1 + y2 − y3

]
=

[
0
0

]
.

and

y2(µ1 − µ2 − 1) = 0

y3(µ2 − µ1 − 1) = 0.

Solving for the optimum gives the dual function

max
µ1,µ2

L(µ1, µ2, y1, y2, y3) = φ(y1, y2, y3) = 2y1 + y2 + y3

and the dual problem is

min φ(y1, y2, y3) = 2y1 + y2 + y3

subject to y1 + y2 − y3 = −x1
3y1 − y2 + y3 = −x2
y2, y3 ≥ 0

Next, we solve this dual problem. First, note that if the primal problem is feasible, a solution
will have one of µ1 − µ2 − 1 = 0 or µ2 − µ1 − 1 = 0 but not both since these lines are
parallel. Therefore, by the complementary slackness conditions, one of y2 or y3 must equal to
zero which will depend on the values of x1 and x2. From the outer problem, we know that
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x1 + x2 = 1 and 3x1 − x2 ≥ 0. This implies that x1 ≥ 1/4 and x2

x1
≤ 3. From this, one can

show that the level set curves of the primal problem −x1µ1 − x2µ2 = c towards increasing
direction lastly intersect with the feasible region at the extreme point at the intersection of
µ2 − µ1 = 1 and µ1 + 3µ2 = 2. Therefore, the constraint µ1 − µ2 = 1 is not active and so
y2 must be equal to zero at the optimal solution. If y2 is zero, then the optimal solution
to the dual problem is y∗ = (−x1/4 − x2/4, 0, 3x1/4 − x2/4) with optimal objective value
φ∗ = x1/4− 3x2/4.

c) Therefore, the combined problem is

min x21 + 2x22 − 2x1x2 +
1

4
x1 −

3

4
x2

subject to x1 + x2 = 1

3x1 − x2 ≥ 0

Problem 6

For parts a)-c) below, label them as True or False. If true, provide a short reason; if false, provide
reasoning or a counter example.

a) The shadow price of a non-binding constraint can be non-zero.

b) For a LP problem, it is possible that the primal problem has an unbounded objective value,
while the dual problem has a non-empty feasible region.

c) For a LP problem, it is possible that the primal problem has a finite optimal value, while the
dual problem has no feasible solution.

Solution:

a) False. Complementary slackness requires that at least the shadow price is zero or its associated
constraint is binding.

b) False. The weak duality theorem implies that if the primal problem has unbounded objective
value, then the dual problem is infeasible.

c) False. The strong duality theorem implies that if the primal problem is feasible and bounded,
then the dual is also feasible and bounded.
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