
MS&E 111X & 211X

Introduction to Optimization (Accelerated)

Homework 2

Course Instructor: Yinyu Ye

Due Date: 11:59 pm Oct 7, 2021

Please submit your homework through Gradescope. If you haven’t already been added to Grade-
scope, you can use the entry code 2RJNKV to join. Please note: late homework will not be
accepted. Each problem will be graded out of 10 points.
Some problems allow group work. Groups should be no larger than 4. If you decide to work
together, provide the names of those you worked with.

Problem 1 Convex sets and convex functions

Identify whether the following sets are convex.

(a) F := {x ∈ Rn : Ax = b, x ≥ 0}, where data matrix A ∈ Rm×n and vector b ∈ Rm.

(b) Fix data matrix A and consider the b-data set for F defined above:

B := {b ∈ Rm : F is not empty}

(c) {x : x2 ≥ 1}.

(d) {x : x2 ≤ 1}.

Identify whether the following functions are convex.

(e) Negative entropy

h(p) =

n∑
i=1

pilog(pi)

On {p ∈ Rn, pi > 0 ∀ i, eT p = 1}, where e ∈ Rn is the vector of ones.
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(f) Floor function
f(x) = bxc = max{k ≤ x, k is an integer}

(g) Sum of largest components

f(x) =

k∑
i=1

x(i)

where x ∈ Rn, k is an integer between 1 and n and x(i) denote the ith largest element of the vector
x.

Solution

(a) Yes. Take any two points x′, x′′ ∈ F , that is, Ax′ = b, x′ ≥ 0 and Ax′′ = b, x′′ ≥ 0. Then, for
any α ∈ [0, 1], we must have

ax′ + (1− α)x′′ ≥ 0

Moreover,
A(αx′ + (1− α)x′′) = αAx′ + (1− α)Ax′′ = αb+ (1− α)b = b

Thus, αx′ + (1− α)x′′ ∈ F

(b) Yes. Take any two points b, b′′ ∈ B. Then we must have x′ ≥ 0 and x′′ ≥ 0 such that Ax′ = b′

and Ax′′ = b′′. Now we like to prove that the convex combination αb′ + (1 − α)b′′ is also in B.
Consider the convex combination x = αx′ + (1− α)x′′. Obviously, x ≥ 0. Further more,

Ax = A(αx′ + (1− α)x′′) = αAx′ + (1− α)Ax′′ = αb′ + (1− α)b′′

which give the desired proof.

(c) No. Consider x = 1 and x = −1, the convex combination is not in the set.

(d) Yes. Level set of convex function is convex.

(e) Yes. Take the second order derivative, one have

f(pi) = pilog(pi), ∇2f(pi) =
1

pi
> 0

And h(p) =
∑
i f(pi) is the sum of convex functions, which keeps convexity.

(f) No. Consider x = 0.5, y = 1.5 and α = 0.5. The above instance does not satisfy definition on
convexity.
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(g) Yes. The problem could be formulate as

f(x) = max
p

xT p

s.t. eT p = k, 0 ≤ p ≤ e

Hence the f(x) is convex in x. To see this, note

f(αx+ (1− α)y) = max
p, eT p=k,0≤p≤e

(αx+ (1− α)y)p

≤ α max
p, eT p=k,0≤p≤e

xT p + (1− α) max
p, eT p=k,0≤p≤e

yT p = αf(x) + (1− α)f(y)

Problem 2

Consider the two-variable linear program with 6 inequaltiy constraints:

max 3x1 + 5x2

s.t. x1 ≥ 0

x2 ≥ 0

−x1 + x2 ≤ 2.5

x1 + 2x2 ≤ 9

x1 ≤ 4

x2 ≤ 3

(a) Plot the lines xj = 0, j = 1, . . . 6 (all on the same two-dimensional graph of x1 and x2) where
for j = 3, 4, 5, 6, xj denotes the slack variable in jth constraint in the LP standard form .

(b) Identify the extreme points of the feasible region as intersections of suitable lines xj = 0.

(c) For each pair of adjacent extreme points of the feasible region, describe how each direction of
the edge between them can be generated by increasing the value of a single variable chosen from
{x1, x2, x3, x4, x5, x6}.

Solution (a) Omitted
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(b)

Extreme points Defining Equations
O : (0, 0) x1 = x2 = 0
A : (0, 2.5) x1 = x3 = 0
B : (0.5, 3) x3 = x6 = 0
C : (3, 3) x4 = x6 = 0
D : (4, 2.5) x4 = x5 = 0
E : (4, 0) x2 = x5 = 0

(c)

From To Increasing
O A x2
A B x1
B C x3
C D x6
D E x4
E O x5
O E x1
E D x2
D C x5
C B x4
B A x6
A O x3

Problem 3 Phase One Problem

Consider a system of m linear equations in n non-negative variables, say

Ax = b, x ≥ 0

Assume the right-hand side vector b is non-negative. Now consider the related linear program

min eT y

s.t. Ax+ Iy = b

x ≥ 0, y ≥ 0

where e is the vector of all ones, and I is the m ×m identity matrix. This linear program is
called a Phase One problem.

(a) Write the Lagrange function of the Phase One problem and the dual of Phase One Problem.

(b) Write the complementary slackness conditions for the Phase One problem.

(c) True of False Questions

1. The Phase One problem always has a basic feasible solution.
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2. The Phase One Problem always has an optimal solution.

3. {x : Ax = b, x ≥ 0} 6= ∅ if and only if the optimal value of the objective function in the
corresponding Phase One problem is zero.

Solution

(a)
L(x, y, u)x≥0,y≥0 = eT y − µT (Ax+ Iy − b)

max bTµ

s.t. ATµ ≤ 0

µ ≤ e

(b) Primal complementary Slackness:

µi(Ax+ Iy − b)i = 0 ∀ i

Dual complementary slackness:

xj(−ATµ)j = 0 ∀ j = 1, . . . , n

yi(1− µi) = 0 ∀i = 1, . . . ,m

(c) (1) True. [x; y] = [0; b] is a basic solution to the Phase One Problem; since b is non-negative by
assumption, it is also a feasible solution.

(2) True. Since the Phase One problem is feasible, and its objective value is bounded from below
by 0, the problem always has an optimal solution

(3) True. If the optimal value of the Phase One problem is zero, then we must have also the
optimal solution (x ≥ 0, y = 0) and that Ax = b,that is, {x : Ax = b, x ≥ 0} 6= ∅. Conversely, if
{x : Ax = b, x ≥ 0} 6= ∅, then for any x satisfies Ax = b, x ≥ 0 (we know such x exists as the set
is non-empty), [x; y] = [x; 0] is an optimal solution to the Phase One Problem with optimal value
0 (it is feasible as Ax+ Iy = b, and x ≥ 0, y ≥ 0, with objective value 0 and no other solution can
achieve a lower value. Note eT y ≥ 0 for all y ≥ 0, so no other solution can achieve a lower value.)
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Problem 4

Consider the following problem for a parameter κ > 0:

min (x1 − 1)2 + x22

s.t. − x1 +
x22
κ
≥ 0

(a) Is x = 0 a first order KKT solution?

(b) Is x = 0 a second order KKT solution for some value of κ?

Solution
Define f(x) = (x1 − 1)2 + x22, c(x) = −x1 +

x2
2

κ . Then the Lagrangian function for this problem is

L(x, y) = f(x)− yc(x) = (x1 − 1)2 + x22 − y(−x1 +
x22
κ

), y ≥ 0

(a) Firstly, x = 0 is feasible with c(x) = 0, moreover,

∇f(0) = (−2; 0), ∇c(0) = (−1; 0)

Thus y = 2 makes ∇f(0) = 2∇c(0) so that x = 0 is a first order KKT solution.

(b) The hessian is given by

H =


∂2L

∂x21

∂2L

∂x1∂x2
∂2L

∂x2∂x1

∂2L

∂x22

 =

(
2 0

0 2− 2λ

κ

)

We then need to have 2− 2λ

κ
≥ 0⇒ k ≥ 2

Problem 5

Consider the Support Vector Machine problem

min β + µ‖x‖2

s.t. aTi x+ x0 + β ≥ 1, ∀i

bTj x+ x0 − β ≤ −1, ∀j
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β ≥ 0

with β, x0 ∈ and x = [x1; . . . ;xn], ai, bj ∈ Rn for all i, j, and ‖x‖2 =
∑n
i=1 x

2
i

(a) Write out the Lagrangian function of SVM problem.

(b) Suppose that we have 6 training data in R2: a1 = (0; 0), a2 = (1; 0), a3 = (0; 1), b1 = (0; 0),
b2 = (−1; 0), b3 = (0;−1) . Use the optimality conditions to verify whether the following solutions
is optimal.

(1) for µ = 0, x = [1; 1], x0 = 0, β = 1

(2) For µ = 10, x = [1; 1], x0 = 0, β = 1

(c) Use solver to find the optimal solution for µ = 10.

Bonus question: When µ = 0, is the optimal solution unique? When µ = 10, is the optimal
solution unique? Prove your claim.

Solution
(a) Let the multipliers for ai constraints be yai ≥ 0 and those for bj constraints be ybj ≤ 0 and β ≥ 0

be yβ ≥ 0. Then the Lagrangian function is

L(x, x0, β, y
a, yb, yβ)yai ,ybj ,yβ ,β≥0 = β+µ‖x‖2−

∑
i

yai (aTi x+x0 +β−1)−
∑
j

ybj(−bTj x−x0 +β−1)

1) Yes. For µ = 0, any point of the form β = 1, x = (t; t),x0 = 0 with t ≥ 0 is optimal, as the
objective value is 1 and the constraints are satisfied. So the optimal solution is not unique.

2) No. For µ > 0, a point is optimal if and only if β = 1 and x = 0. Hence we obtain a unique
optimal solution β = 1,x = 0 and x0 = 0.

(c) Omitted

Bonus Question: Firstly, we show that for the set of ai,bj given in this problem, any feasible β
satisfies β ≥ 1. To see this, suppose on the contrary that β < 1. Then for a1 = b1, we have

aT1 x+ x0 ≥ 1− β > 0 > −1 + β ≥ bT1 x+ x0

which is a contradiction. Hence the optimal value β + µ‖x‖2 of the primal objective function is at
least 1. Moreover, it can always be achieved by simply setting β = 1, x = 0 and x0 = 0. Hence
we know that the optimal value is always 1 no matter whether µ = 0 or not. Then, we know
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for µ > 0 the optimal solution is always unique, as for any x 6= 0, we could deviate to x = 0
and strictly decrease the objective value. For µ = 0, the optimal solution is not unique. both
x = [0; 0], x0 = 0, β = 1 and x = [1; 1], x0 = 0, β = 1 are optimal solutions.

Problem 6

In logistic regression, we determine x0 and x by maximizing(
Πi,ci=1

1

1 + exp(−aTi x− x0)

)(
Πi,ci=−1

1

1 + exp(bTi x+ x0)

)
which is equivalent to minimize the log-likelihood loss∑

i,ci=1

log(1 + exp(−aTi xi − x0)) +
∑

i,ci=−1
log(1 + exp(bTi x+ x0))

Suppose that we have 6 training data, with a1 = (0; 0), a2 = (1; 0), a3 = (0; 1), b1 = (0; 0),
b2 = (−1; 0), b3 = (0;−1), where ai are points we label as spam and bi are points we label as
non-spam. (You may view ai has label ci = 1 and bi has label ci = −1).

(a) What is the KKT Condition for logistic regression?

(b) Use the KKT condition to verify the whether the following solution is optimal: x = [0; 0] and
x0 = 0.

(c) Typically, we add a regularization to the objective

min
∑
i,ci=1

log(1 + exp(−aTi xi − x0)) +
∑

i,ci=−1
log(1 + exp(bTi x+ x0)) + µ

n∑
i=0

x2i

what is the KKT Condition for the regularized logistic regression?

Bonus Teamwork : solve the problem using any non-linear programming solver for the non-
regularized logistic regression.

Solution.
(a) ∑

i,ci=1

exp(−aTi xi − x0)

1 + exp(−aTi x− x0)
[−ai;−1] +

∑
i,ci=−1

exp(bTi x+ x0)

1 + exp(bTi x+ x0)
[bi; 1] = [0; . . . ; 0]
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(b) plug in x = [0; 0] and x0 = 0 one have

1

2
([0; 0;−1] + [−1; 0;−1] + [0;−1;−1]) +

1

2
([0; 0;−1] + [−1; 0;−1] + [0;−1;−1]) 6= [0; 0; 0]

so x = [0; 0] and x0 = 0 is not an optimal solution.

(c) ∑
i,ci=1

1

1 + exp(aTi x+ x0)
[−ai;−1] +

∑
i,ci=−1

1

1 + exp(−bTi x− x0)
[bi; 1] + 2[x1; . . . ;xn;x0] = 0

(d) Omitted
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