Helicopter retrieval equations of motion & simulation.

One way to generate an equation that governs the motion of fishermen in a rescue bucket (modeled as a particle Q) being retrieved with a relatively light straight cable B into a helicopter (modeled as a rigid body A) is to form the resultant of all forces on Q as $\mathbf{F}^Q = -m g \, \widehat{\mathbf{a}}_{\mathrm{y}} + T \, \widehat{\mathbf{b}}_{\mathrm{y}}$ and relate it to Q's mass and acceleration in N via Newton's law as $\mathbf{F}^Q = m^N \mathbf{a}^Q$, i.e.,

$$-m g \widehat{\mathbf{a}}_{\mathbf{y}} + T \widehat{\mathbf{b}}_{\mathbf{y}} = m \left[\ddot{x} \widehat{\mathbf{a}}_{\mathbf{x}} + \ddot{y} \widehat{\mathbf{a}}_{\mathbf{y}} + (L \ddot{\theta} + 2 \dot{L} \dot{\theta}) \widehat{\mathbf{b}}_{\mathbf{x}} + (-\ddot{L} + L \dot{\theta}^2) \widehat{\mathbf{b}}_{\mathbf{y}} \right]$$

= 0

B

Form a single scalar equation of motion written in terms of symbols in the table except T^{1} . **Result:**

When the helicopter is **stationary** in N, Q's motion is governed by

$$L\ddot{\theta} + 2\dot{L}\dot{\theta} + g\sin(\theta) = 0$$

Plot θ vs. t for $0 \le t \le 24.92$ sec. Section 2.7 shows how to numerically solve ordinary differential equations.

Description	Symbol	Type	(Initial) value or specification
Angle between $\widehat{\mathbf{a}}_{\mathrm{y}}$ and $\widehat{\mathbf{b}}_{\mathrm{y}}$	θ	variable	$\theta(0) = 1^{\circ} \qquad \dot{\theta}(0) = 0 \frac{\mathrm{rad}}{\mathrm{sec}}$
Distance between Q and A_o	L	specified	L(t) = 50 - 2t meters
Earth's local gravitational acceleration	g	$\operatorname{constant}$	$9.8 \frac{\mathrm{m}}{\mathrm{sec}^2}$

(a) I think the simulation results are intuitive. **True/False**.

- (b) Similar results are associated with sucking spaghetti into your mouth. **True/False**.
- (c) High-oscillation swings may be dangerous/fatal for the fishermen and helicopter. **True/False**.
- (d) These high-oscillations may be related to problems encountered during a U.S. space-shuttle retrieval of a satellite in low-Earth orbit. True/False.
- (e) I know how to specify a different function for L(t) to control this system so $\theta(t)$ stays small (e.g., less than 5°). True/False.

¹The single scalar equation of motion should be a 2^{nd} -order ODE involving $\ddot{\theta}$.