6.4 Radiation beam targeting a cancer cell (two-axis machine).

The following shows a radiation machine consisting of a rigid emitter B and a circular gimbal A. Emitter B is connected by a small one-axis revolute "targeting" motor to gimbal A at point B_o . Gimbal A rotates relative to the treatment room N because of a **constant-speed** revolute motor that connects A to N at point N_o and causes B_o to move with **constant-speed** in a circle centered at point N_o of N. Note: Both revolute motor axes are perpendicular to the circle traced out by B_o .

A thin radiation ray is emitted from B_o to target a cancer cell Q that moves (e.g., because of respiration and circulation) along a line that passes through points Q_i and Q_f of a patient who is otherwise motionless in a treatment room N. Note: Line segment $\overline{Q_i Q_f}$ is perpendicular to the revolute motors' axes.

0 1 2 3 4

Horizontally-right is generally directed from the patient's left to right shoulder. Vertically-upward is generally directed from the patient's posterior to anterior. θ_A is **counter-clockwise positive** whereas θ_B is **clockwise positive**.

The cancer cell moves from Q_i to Q_f with displacement

 $s = \frac{A}{2} [1 - \cos(\omega_r t)]$

where A, the distance between Q_i and Q_f , is

$$
A = \sqrt{(x_f - x_i)^2 + (y_f - y_i)^2}
$$

Determine θ_B at $t = 0$ and $t = 60$ sec (3 significant digits). Plot θ_B [°] for $0 \le t \le 360$ sec with data every 0.25 sec. See Section 2.5.5 and ensure θ_B is continuous to reflect a real motor. **Result:**

$$
\theta_B|_{t=0} = |13.7|^\circ
$$
 $\theta_B|_{t=60} = |49.6|^\circ$

Maximum torque specification helps properly size a motor. Knowing the targeting motor's torque is $I \hat{\theta}_B$ ($I = 2 \text{ g m}^2$) determine its maximum absolute value $(1^+$ significant digit). **Result:**

$$
|{\bf T}_{\rm max}|~=~\boxed{0.83}~\rm{million\,m}
$$

An alternate treatment strategy is to lock θ_A and θ_B so radiation targets Q at the midpoint of line segment $\overline{Q_i Q_f}$. The sensitivity and ease of targeting depends on the angle between the radiation and $\overline{Q_i Q_f}$. Determine sets of values for θ_A and θ_B to deliver radiation perpendicular or parallel to $\overline{Q_i Q_f}$ (3⁺ significant digits). Complete the table with $0° \le \theta_A \le 360°$ and $-360° \le \theta_B \le 0°$. **Result:**

