6.4 Radiation beam targeting a cancer cell (two-axis machine).

The following shows a radiation machine consisting of a rigid emitter B and a circular gimbal A. Emitter B is connected by a small one-axis revolute "targeting" motor to gimbal A at point B_o . Gimbal A rotates relative to the treatment room N because of a **constant-speed** revolute motor that connects A to N at point N_o and causes B_o to move with **constant-speed** in a circle centered at point N_o of N. Note: Both revolute motor axes are perpendicular to the circle traced out by B_o .

A thin radiation ray is emitted from B_o to target a cancer cell Q that moves (e.g., because of respiration and circulation) along a line that passes through points Q_i and Q_f of a patient who is otherwise motionless in a treatment room N. Note: Line segment $\overline{Q_i Q_f}$ is perpendicular to the revolute motors' axes.

Description	Symbol	Type	Value
Horizontally-right measure of Q_i 's position vector from N_o	x_i	Constant	10 cm
Vertically-upward measure of Q_i 's position vector from N_o	y_i	Constant	$1 \mathrm{cm}$
Horizontally-right measure of Q_f 's position vector from N_o	x_f	Constant	$20 \mathrm{~cm}$
Vertically-upward measure of Q_f 's position vector from N_o	y_f	Constant	$2 \mathrm{cm}$
Patient respiration rate (15 breaths/minute)	ω_r	Constant	$\frac{2\pi}{4}$ rad soc
Radius of circular gimbal A	R	Constant	$40~\mathrm{cm}$
Angle between downward vertical and B_o 's position vector from N_o	θ_A	Specified	$\frac{2\pi}{360} t \frac{\text{rad}}{\text{sec}}$
Angle between upward vertical and Q 's position vector from B_{α}	θ_B	Variable	300 sec

Horizontally-right is generally directed from the patient's left to right shoulder. Vertically-upward is generally directed from the patient's posterior to anterior. θ_A is **counter-clockwise positive** whereas θ_B is **clockwise positive**.

The cancer cell moves from Q_i to Q_f with displacement

 $s = \frac{A}{2} \left[1 - \cos(\omega_r t) \right]$

where A, the distance between Q_i and Q_f , is

$$A = \sqrt{(x_f - x_i)^2 + (y_f - y_i)^2}$$

Determine θ_B at t = 0 and t = 60 sec (3 significant digits). Plot θ_B° for $0 \le t \le 360$ sec with data every 0.25 sec. See Section 2.5.5 and ensure θ_B is continuous to reflect a real motor. **Result:**

$$\left. \theta_B \right|_{t=0} = \left[13.7 \right]^{\circ} \qquad \left. \left. \theta_B \right|_{t=60} = \left[-49.6 \right]^{\circ} \right]$$

Maximum torque specification helps properly size a motor. Knowing the targeting motor's torque is $I \ddot{\theta}_B$ $(I = 2 \text{ gm}^2)$ determine its maximum absolute value (1⁺ significant digit). **Result:**

$$|\Gamma_{\text{max}}| = |0.83|$$
 milliNewton m

An alternate treatment strategy is to lock θ_A and θ_B so radiation targets Q at the midpoint of line segment $\overline{Q_i Q_f}$. The sensitivity and ease of targeting depends on the angle between the radiation and $\overline{Q_i Q_f}$. Determine sets of values for θ_A and θ_B to deliver radiation perpendicular or parallel to $\overline{Q_i Q_f}$ (3⁺ significant digits). Complete the table with $0^\circ \leq \theta_A \leq 360^\circ$ and $-360^\circ \leq \theta_B \leq 0^\circ$. **Result:**

Solution #	Perpendicular to $\overline{Q_i Q_f}$		Parallel to $\overline{Q_i Q_f}$		
1	$\theta_A = 27.9^{\circ}$	$\theta_B = -5.71^\circ$	$\theta_A = 95.7^{\circ}$	$\theta_B = -95.7$ °	
2	$\theta_A = 163.6$ °	$\theta_B = \frac{-185.7}{0}^{\circ}$	$\theta_A = 275.7$ °	$\theta_B = \frac{-275.7}{2}^{\circ}$	

