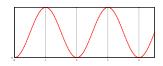
3.7 Radiation beam targeting a cancer cell (two-axis machine).

The following shows a radiation machine consisting of a rigid emitter B and a circular gimbal A. Emitter B is connected by a small one-axis revolute "targeting" motor to gimbal A at point B_0 . Gimbal A rotates relative to the treatment room N because of a constant-speed revolute motor that connects A to N at point N_o and causes B_o to move with **constant-speed** in a circle centered at point N_o of N. Note: Both revolute motor axes are perpendicular to the circle traced out by B_o .


A thin radiation ray is emitted from B_o to target a cancer cell Q that moves (e.g., because of respiration and circulation) along a line that passes through points Q_i and Q_f of a patient who is otherwise motionless in a treatment room N. Note: Line segment $\overline{Q_i Q_f}$ is perpendicular to the revolute motors' axes.

Description	Symbol	Type	Value
Horizontally-right measure of Q_i 's position vector from N_o	x_i	Constant	10 cm
Vertically-upward measure of Q_i 's position vector from N_o	y_i	Constant	$1 \mathrm{~cm}$
Horizontally-right measure of Q_f 's position vector from N_o	x_f	Constant	$20~\mathrm{cm}$
Vertically-upward measure of Q_f 's position vector from N_o	y_f	Constant	$2 \mathrm{~cm}$
Patient respiration rate (15 breaths/minute)	ω_r	Constant	$\frac{2 \pi}{4} \frac{\text{rad}}{\text{sec}}$
Radius of circular gimbal A	R	Constant	$40~\mathrm{cm}$
Angle between downward vertical and B_o 's position vector from N_o	θ_A	Specified	$\frac{2 \pi}{360} t \frac{\text{rad}}{\text{sec}}$
Angle between upward vertical and Q 's position vector from B_o	θ_B	Variable	300 sec

Horizontally-right is generally directed from the patient's left to right shoulder. Vertically-upward is generally directed from the patient's posterior to anterior. θ_A is counter-clockwise positive whereas θ_B is clockwise positive.

The cancer cell moves from Q_i to Q_f with displacement

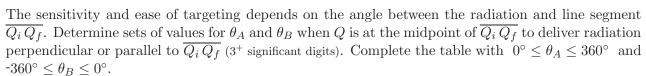
$$s = \frac{A}{2} \left[1 - \cos(\omega_r t) \right]$$

where A, the distance between Q_i and Q_f , is

$$A = \sqrt{(x_f - x_i)^2 + (y_f - y_i)^2}$$

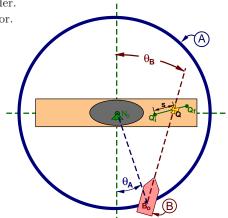
Determine θ_B at t = 0 and t = 60 sec (3 significant digits). Plot θ_B° for $0 \le t \le 360$ sec with data every 0.25 sec. See Section 2.5.4 and ensure θ_B is continuous to reflect a real motor.

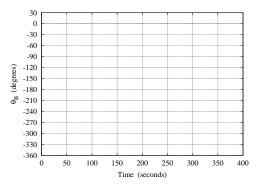
Result:


$$\theta_B|_{t=0} = \square$$

$$\theta_B|_{t=0} =$$
 $\theta_B|_{t=60} =$

Maximum torque specification helps properly size a motor. Knowing the targeting motor's torque is $2 \hat{\theta}_B$ milliNewton m, determine its maximum absolute value (1 significant digit).


Result:


$$|\mathbf{T}_{\mathrm{max}}| =$$
 milliNewton m

Solution #	Perpendicular to $\overline{Q_i Q_f}$	Parallel to $\overline{Q_i Q_f}$
1	$\theta_A = $ $\theta_B = $	$\theta_A = $ $\theta_B = $
2	$\theta_A = $ $\theta_B = $	$\theta_A = $ $\theta_B = $

