
Prelab Participation Lab√
+

√ √− 0
√

+
√ √− 0

√
+

√ √− 0
Name:

8 Lab: Motor Control

The purpose of control system design is to determine an appropriate input to an actuator (e.g.,
voltage to a motor) to obtain a desired (or nominal) output (e.g., motor speed).

Control systems help satellites to track distant stars, airplanes to follow a desired trajectory,
cars to travel at a designated speed, disk-drives to spin at desired angular speeds, and humans
to walk, hear, and regulate body temperature.

This lab uses system identification techniques to determine a motor’s relevant physical pa-
rameters. You will implement a control law to control a motor’s orientation and angular speed.
You will look at a motor’s step response and its transient behavior for various inputs.

8.1 PreLab: Working Model and brainstorming

1. Download the following Working Model simulations from the class website:
MotorControlWithOnOffAndDeadBand.wm2d
MotorControlWithKpKi.wm2d

2. Run the Working Model simulations.
Record results on the Working Model PreLab (feedback control of motor in back of the book).

8.2 Experimental

The system to be controlled is a motor whose rotor (shaft)

is attached to a rod. Using �F = m�a and circuit analysis,
the equation relating vi to motor orientation is as follows
(this should be familiar from the homework):

L (Jrod + Jm)

km

...
θ̃ +

L bm + R (Jrod + Jm)

km

¨̃
θ +

(
R bm

km

+ kv

)
˙̃
θ = ṽi

In the previous governing ODE, moments of inertia always appear combined as Jeff

∆
= Jrod+Jm.

Knowing Jrod � Jm, approximate the value of Jeff .

mass of rod mrod ≈ kg length of rod Lrod ≈ m

Jeff ≈ Jrod =
1

12
mrod Lrod

2 ≈ kg m2

8.3 Equipment

We use several pieces of equipment to measure and control the motor’s angular speed, namely,
we use an encoder, an Arduino microprocessor, a transceiver, and a computer.13

• Encoder:
Our optical quadrature encoder determines our motor’s rotational speed
by detecting alternating light and dark patterns on a disk. For example,
the encoder on the right shows 8 transitions (from light to dark or vice-versa).
A quadrature encoder has the ability to detect both angular speed and
direction. Our encoder has 1000 transitions (500 black sections and 500 white

sections) and counts 1000 tics
rev .

Shown to the right is
the output signal from
the encoder to the Ar-
duino microprocessor.

• Computer:
The computer connects to the Arduino microprocessor via a USB cable (Serial Communi-
cation). Computer bits (ones and zeros) are transferred between the computer and Arduino
microprocessor. You will use the compiled Arduino-specific executable file (Lab8.ino) to
communicate between the computer and motor. When you run Lab8.ino, you will be
prompted to select proportional or velocity control (choose the appropriate selection for the
associated lab question).

• Arduino UNO microprocessor (the interface between the computer and motor):
In this lab, the Arduino will use PWM (Pulse Width Modulation)14 to vary the average
voltage delivered to the motor, which indirectly controlling the motor’s speed.

PWM ⇒ Average Voltage ⇒ Motor current ⇒ Motor torque ⇒ α ⇒ ω

The frequency of this PWM signal is 30 KHZ.
The Arduino receives the digital signal from the encoder
and counts the transitions from “high” (5 Volts) to “low”
(0 Volts) of the signal in 2 milliSecond intervals.
The on-screen data (i.e., x in the following equation) is in units

of 1 tic
2 ms. The equation converting units displayed on the

computer screen to the motor’s angular speed (in RPM) is

x tics
2 ms

∗ 1000 ms
1 second

∗ 60 sec
1 minute

∗ 1 rev
1000 tics

=
30 rev

1 minute

• Motor driver/Arduino Interface Board:
The motor driver circuit receives the PWM signal from the Arduino microprocessor and
controls the voltage delivered to the motor via the 12 Volt wall adapter.

13Most motors do not come attached to a rotary encoder and assembled with a encoder, microprocessor,
transceiver, and computer.

14A PWM signal is on (designated by a “high-bit” 1) or off (designated by a “low-bit” 0) for different intervals.

8.3.1 Data collection

1. If necessary, login to the lab computer. Username: me161student
Password: 1euler1. Ensure the domain is ENGR

2. Power the Arduino by plugging-in (in order):
(a). 12 Volt adaptor (between the board and wall socket)
(b). USB cable (between the board and the computer)

3. From the desktop, navigate to the Lab8 folder and open Lab8.ino

4. Under Tools → ports, select something other than COM1, COM2, or COM3
(the USB port can be enumerated to anything other than these)

5. Click the magnifying glass button (or type Ctrl+Shift+m) to open the serial monitor

6. On the serial monitor screen, a menu should appear. Select position or velocity control.

7. Enter values for kp, ki, and kd and enter a desired (nominal) value (see below).

8. Enter “r” to stop recording data (when sufficient data has been collected).

9. Plot the data (e.g., using Excel, MATLAB R©, or PlotGenesis) and determine ζ , ωn, etc.
For the yAxis, convert encoder counts to radians by multiplying by 2 π

1000

For the xAxis, convert to seconds by dividing by 500 (i.e., each tick is 2 ms)
Note: Use the oscilloscope to ensure V cc = 12 volts.

10. Email the data files and/or graphs to yourself and your group members.

11. Ensure the power to the board is off and the setup is neat for the next lab.

8.3.2 Experimental determination of ζ and ωn

Using an input step response of θdesired = 10 rad and a position PD control law of

ṽi = -kp θ̃ − kd

˙̃
θ with kp = 1 and kd = 0.01

experimentally determine values for ωn and ζ (assume L ≈ 0 from here on).

Result:

ωn =
rad

sec
ζ = noUnits

8.3.3 Analytical expressions for ζ and ωnin terms of kp, kd, . . .

Using the governing ODE and previous PD control law, write the equations for ωn and ζ as
functions of kd and kp (do this symbolically - without numbers).
Result:

ωn = ζ =
1

2

8.3.4 System identification for motor armature resistance and motor damping

Determine the value for the motor resistance R and motor’s damping bm for the motor with a
rod attached. (Note: The last lab showed km = kv ≈ 0.041 N m

Amp
.)

Result:

R = Ω bm = N m sec

8.3.5 Position Control

Analytically calculate values for kp and kd corresponding to an overshoot of 0.257 and settling
time of 1.75 sec. How confident are you that this will work? [1=doubtful 2 3 4 5=very
confident]
Result:

kp = kd =

Try these values for kp and kd on the actual system. Graph the data and show your lab TA your
graph. Calculate the experimental overshoot Mp and settling time tsettling.
Result:

Mp = tsettling =

How do the actual values of Mp and tsettling compare to the desired maximum overshoot of 0.257

and settling time of 1.75 sec. Discuss potential sources of error, e.g., in the governing ODE or
experimental data acquisition.
Result:

What is the fastest settling time you can get with critical damping and what are the corre-
sponding values for kp and kd? [Hint: Pick a kp value (5-10) and solve for kd so the system is critically

damped. Then keep trying!]
Result:

tsettling = kp = kd =

Why can’t you get a faster settling time?

Do you get any steady-state error? If so, how much and what do you think causes it?

Write out a new PID control law (with integral control) and then try various values for ki on
the actual system. What happens? How does integral control eliminate steady-state error? Do
you have to be careful with your value for ki?

ṽi =

8.3.6 Velocity Control

Note: The velocity control on the microcontroller rounds the target velocity you give it to increments of 2 pi

5
≈

1.26 rad
sec

. This number arises from the combination of running the control software at 500 Hz and having 500
gaps in the encoder.
Implement velocity PI control. What is the governing equation when using PI control?

= 0

Find kp and ki to give a peak of 30 rad

sec
at t=2 sec to a 24 rad

sec
step. Try to get the motor to spin

at the desired rate of 24 rad

sec
.

kp = kd =

