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Linear Systems Analysis
In the Frequency
Domain

7-1 INTRODUCTION

System response to sinusoidal inputs is the major subject of this chapter, We first d
fine the sinusoidal transfer function and explain its use in the steady-state sinusoi
response. Then we treat vibrations in rotating mechanical systems, followed by dj
cussions of vibration isolating problems and dynamic vibration absorbers. Fina
we deal with vibrations in multi-degrees-of-freedom systerns.

The outline of the chapter is as follows: Section 7—
1al. Section 7-2 begins with forced vibrations of mechani
the sinusoidal transfer function for the dynamic system. Section 7-3 treats vibrati
in rotating mechanical systems. Section 7-4 discusses vibration isolation proble
that occur in rotating mechanical systems. Here transmissibility for force excitati
and that for motion excitation are discussed, Section 7-5 presents a way to redii
vibrations caused by rotating unbalance and treats a dynamic vibration absorb
commonly used in industries. Section 76 analyzes vibrations in multi-degrees-
freedom systems and discusses modes of vibration.

7-2 SINUSOIDAL TRANSFER FUNCTION

When a sinusoidal input is applied to a linear system, it will tend to vibrate at its ow
natural frequency as well as follow the frequency of the input. In the presence.
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damping, that portion of motion not sustained by the sinusoidal input wiil gradually
die out. As a result, the response at steady state is sinusoidal at the same frequency
as the input. The steady-state output differs from the input only in the amplitude
and phase angle. Thus the output-input amplitude ratio and the phase angle be-
tween the output and input sinusoid are the only two parameters needed to predict
the steady-state output of a linear system when the input is a sinusoid. In general,
the amplitide ratio and the phase angle depend on the input frequency.

Frequency response. The term frequency response refers to the steady-
state response of a system to a sinusoidal input. For all frequencies from zero to
infinity, the frequency-response characteristics of a system can be completely de-
scribed by the output-input amplitude ratio and the phase angle between the output
and input sinusoid. In this method of systems analysis, we vary the frequency of the
input signal over a wide range and study the resulting response. (We shall present
detailed discussions of frequency response in Chapter 9.)

Forced vibration without damping. Figure 7-1 illustrates a spring-mass
system in which the mass is subjected to a sinusoidal input force P sin wt. Let us find
the response of the systern when it is initially at rest.

If we measure displacement x from the equilibrium position, the equation of
motion for the system becomes

mx + kx = Psin wt

x'+£x=£sinmt - (7-1)
m m-

Note that the solution of this equation consists of the vibration at its own natural fre-
quency (complementary solution) and that at the forcing frequency (particular solu-
tlon) Thus the solution x(¢) can be written as

x(f) = complementary solution + particular solution

Now we shall obtain the solution of Equation (7-1) under the condition that the sys-
tem is initially at rest. By:taking the Laplace transform of Equation (7-1) and using

Figure 7-1 Spring—mass system.




do03
MSC SOFTWARE MARC

11/09/05 WED 12:00 FAX 650 32; 5892

294 Linear Systems Analysis in the Frequency Domain
the initial conditions x(0) = 0and %(0) = 0, we obtain
k P
2, K =L

(S m) Xls) m st + o2
Salving for Xi (s),
P 1
m s+ @ 52+ {k/m)
- “Povm/k  Nim P

X(S),_

—_—— + —_——
k—ma® &4 (k/m) ' k — ma? 52+ w?
The inverse Laplace transform of this last equation gives

PovVm/k k F
x(f) = —

X — o sin m T T s sinwe

k — mw?
~ Thisis the complete solution (general solution
solution (which does not dec

S!

ity'when o = @ _+. In other words, if w is
at the forcing frequency (particular soluti
@ 13 above resonance, this vibration beco

Sinusoidal transfer function. The sinusoidal transfer function is defined 48
the: transfer function G(s) in which s is replaced by jw. When only the steady-st;
solation (particular solution) is wanted, the sinusoidal transfer function G(jo
stmplify the solution. In the following discussion we shall consider the behavi

S e
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stable linear systems under steady-state conditions, that is, after initial transients
have died out. And we shall see that sinusoidal inputs will produce sinusoidal out-
puts in steaidy state with the amplitude and phase angle at each frequency o deter-
mined by the magnitude and angle of G(jw), respectively.

Deriving steady-state output to sinusoidal input. We shall show how the
frequency-fesponse characteristics of a stable system can be derived directly from
the sinusoidal transfer function. For the linear system G{(s) shown in Figure 7-2, the
input and eutput are denoted by p(£) and x(2), respectively. The input p(t) is sinu-

soidal and is given by

p(f) = Psinwt
We shall skow that the output x(f) at steady state is given by
() = | G(jw)} Psin(wr + ¢)

where | Gf jw) | and ¢ are the magnitude and angle of G{jw), respectively.
Suppose that the transfer function G(s) can be written as a ratio of two poly-
nomials inss; that is, :

K(s + z)s +2) -+ (s + 2,)
(s +5)(s +5) - (s + 5,)

The Laplace transformed output X () is
X(s) = G(s)P(s) (7-3)

where P(s) is the Laplace transform of the input p(?).

Let us limit our discussion only to stable systems. For such systems, the real
parts of the —s, are negative. The steady-state response of a stable linear system to
a sinusoidal input does not depend on the initial conditions, and so they can be
ignored.

If G(s) has only distinct poles, then the partial-fraction expansion of Equa-
tion (7-3) yields ‘

Gls) =

X(5) = GO) 7o

a a b b b
— + o p e R e (7-4)
s+jw s—jo st5 S+ 85 s+ s,

where g and b, (where i = 1,2,.. ., #) are constants and 7 is the complex conjugate
of a. Thesinverse Laplace transform of Equation (7-4) gives

x{f) = ae™ + aelt + be™ + b+ be

p(t) = Psin ar (1)

X(s) Figure 7-2 Linear system.
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For a;stable system, as ¢ approaches infinity, the termse ™", e™ ™=, . . ., e" "' approa
zero,isince —sy, —$, . . . , =5, have negative real parts. Thus all terms on the rig
handiside of this last equation, except the first two, drop out at steady state. '

1f G(s) involves k multiple poles s5;, then x(¢) will involve such terms as "
(where i = 0,1,.. .,k — 1). Since the real part of the —s;1s negative for a stable g
tem, the terms t"e % approach zero as { approaches infinity.

‘Regardless of whether the system involves multiple poles, the steady-state
sponse thus becomes '

x(t) = ae " + ae’*

where the constanis @ and @ can be evaluated from Equation (7-4).

Paw . P
= G(S)S2+ wz(s + jw) = sz( Jw)

5 = ~jw
 Po . P .
= Gl(s) o (s — ]m)s:jw =2 Glje)
(Notz that a is the complex conjugate of a.) Referring to Figure 7-3, we can wr

G{jw) = G, + JG,

| G(jw)| cos ¢ + j| G{jw)| sin &

| G(jw) | (cos ¢ + jsin )

| G(je)| e

" (Notie that /G(jw) = je? = $.) Similarly,

G(-jw) = | G(~jw)| e = | Gljw}| e

Tt follows that

2 e
%

= ;l G{jw)| &

G(~jw) Fignre 7-3 Complex function and its
complex conjugate.
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“Then Equation (7-3) can be written as
florrd) _ o= jlar+d)
2j
| G(jw)| Psin (ot + ¢)
X sin {wt + ¢) (7-6)

where X = |G(jew) | Pand ¢ = (G( jo). We see that a stable linear system subjected
to a sinusoidal imput will, at steady state, have a sinusoidal output of the same fre-
guency as the input. But the amplitude and phase angle of the output will, in gen-
eral, differ from the input’s. In fact, the output’s amplitude is given by the product of
the amplitude ofithe input and | G(jw) |, whereas the phase angle differs from that

of the input by the amount ¢ = /G{jw). ‘
On the basis of the preceding analysis, we are able to derive the following im-~

- portant result. For sinusoidal inputs,

o) = |Gjw)| P2

| 6(jo) | X(jw)| _ amplitude ratio of the output

P(jw)|  sinusoid to the input sinusoid 7-7)

1 5(e) = X(jow) _ tan_l[im_r:iginary part of G( jw)]
DT () real part of G(jw)

_ phase shift of the output sinusoid

with respect to the input sinusoid (7-8)

“Thus the steady-state response characteristics of a linear system to a sinusoidal input
“can be found directly from G(jw), the ratio of X (jw) to P(jw).
Note that the sinusoidal transfer function G (je) is a complex quantity that can
- be represented by the magnitude and phase angle with frequency e as a parameter.
To characterize a linear system completely by the frequency-response curves, we
-must specify both the amplitude ratio and the phase angle as a function of the fre-
quency cw.

Comments. Equation (7-6) is valid only if G(s} = X(s)/P(s) is a stable
system, that is, if all poles of G(s) lie in the left half 5 plane. If a pole is at the origin
and/or poles of €(s) lie on the jw axis (any poles on the jo axis, except at the ori-
gin, must occur as a pair of complex conjugates), the output x(f) may be obtained by
taking the inverse Laplace transform of the equation

P

XG6) = GEP() = Gl6) 51

o) = 27 = 7 Gl |

Note that if a pale or poles of G(s) lie in the right half s plane the system is unsta-
ble and the respense grows indefinitely. There is no steady state for such an unstable
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Example 7-1
Consider the transfer-function system
X(s) = 6(s) = 1
P(s) Ts +1

For the sinusqidéi input p(f) = P sin wz, what is the steady-state output x(2)?
Substituting je for s in G(s) yields

The output-input amplitude ratio is

1
Gjo)| = —=—e
| G(jw)] e

whereas the phase angle ¢ is
¢ = /G(jw) = —tan™ Tw
So for the input p(¢) = P sin wt the steady-state output x(t) can be found as
P . 1

x(1) = ——=——— sin{wt — tan™! Tw)

_ T " + 1
From this equation we see that, for small w, the amplitude of the output x{r) is
equal to the amplitude of the input. For large w, the amplitude of the output ig

and almost inversely proportional to w. The phase angle is 0° at w = 0} and approd
—90° as e increases indefinitely.

Example 7-2

Suppose that a sinusoidal force p(f) = P sin wt is applied to the mechanical 37
shown in Figure 7-4. Assuming that displacement x is measured from the equilibring
position, find the steady-state output.

The equation of motion for the system is

mx + bx + kx = p(r)
The Laplace transform of this equation, assuming zero initial conditions, is
(ms* + bs + k)X(5) = P(s)

where X(s5) = £[x(2)] and P(s) = £[p(5)]. (Note that the initial conditions do n
fect the steady-state output and so can be assumed zero.) The transfer function

b

r—p(t) = P sin i

Figure 7-4 Mechanical system.
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tween displacemtent X(s) and input force P(s) is, therefore, obtained as
XGs) _ N S
P(s) ms? + bs + k

Since the input is a sinusoidal function p() = P sin wt, we can use the sinusoidal trans-
fer function to obtain the steady-state solution. The sinusoidal transfer function is
Xjo) o 11
Pljw) IO T + bjo + k| (k — mo®) + jbe
Referring to Eqaation (7-6), the steady-state output x(¢) can be written

x(t) = | Gljw)| Psin (wt + ¢)

Gls) =

where

, _ 1
1G] = Vik — mo*l + blw?

. 1 _
0 = (Glis) = - —tant P2

k — mow?) + jbe k— mo

%) = P sin(wr — tan™ J"@"_Z-)

V{k — mo?)? + bw? k—mw

Since k/m = wland b/k = 2Z/ w,, this equation can be written

| Uw/w, ]
1 = (0’/a})

Kt

Vi1 = (@/))F + @w/w,)
where x,, = P/kiis the static deflection.
By writing the amplitude of x(f) as X, we find that the amplitude ratio X/x,, is

X 1

¥ VI = (@5 aDF + (Rwjo)

x(1) (7-10)

sin [mt - tan~

and the phase shift ¢ is

o 2elwe,
¢ = —tan 1= (wi/ D) (a)z/wi)

VIBRATIONS IN ROTATING MECHANICAL SYSTEMS

. Vibration is, in general, undesirable because it may cause parts to break down, gen-
erate noise, transmit forces to the foundation, and so on. To reduce the amount of
force transmitted to the foundation as a result of a machine’s vibration (force isola-
tion) as much as possible, machines are usuatly mounted on vibration isolators that

-consist of springs and dampers. Similarly, to reduce the amount of motion trans-
mitted to a delicate instrument by the motion of the foundation (motion isolation),




