
Chapter 11

Dynamics: Inverted pendulum on a cart

The figure to the right shows a rigid inverted pendulum
B attached by a frictionless revolute joint to a cart A
(modeled as a particle). The cart A slides on a horizon-
tal frictionless track that is fixed in a Newtonian reference
frame N . Right-handed sets of unit vectors nx, ny, nz and
bx, by, bz are fixed in N and B respectively, with:

• nx horizontal and to the right
• ny vertically upward
• nz=bz parallel to the axis of rotation of B in N

• by directed from A to the distal end of B

• bx = by ×bz

The identifiers in the following table are useful while form-
ing equations of motion for this system. Complete the
figure to the right by adding the identifiers N , A, B, Bcm,
L, Fc, x, θ, nx, ny, nz, bx, by, bz.

Quantity Symbol Value
Mass of A mA 10.0 kg
Mass of B mB 1.0 kg
Distance from A to Bcm (the mass center of B) L 0.5 m
Central moment of inertia of B for bz Izz 0.08333 kg∗m2

Earth’s sea-level gravitational constant g 9.81 m/sec2

Feedback-control force applied to A in nx direction Fc specified
Distance from No (a point fixed in N) to A x variable
Angle between the local vertical and the long axis of B θ variable

11.1 Kinematics (space and time)

Kinematics is the study of the relationship between space and time, and is independent of the influence of
mass or forces. The kinematic quantities normally needed for dynamic analysis are listed below. In most
circumstances, it is efficient to form rotation matrices, angular velocities, and angular accelerations before
position vectors, velocities, and accelerations.

Kinematic Quantity Quantities needed for analyzing the inverted pendulum on a cart
Rotation matrix bRn, the rotation matrix relating bx, by, bz and nx, ny, nz

Angular velocity NωωωωωωωωωωωωωB, the angular velocity of B in N
Angular acceleration NαααααααααααααB , the angular acceleration of B in N

Position vectors rA/No and rBcm/A, the position vector of A from No and of Bcm from A
Velocity NvA and NvBcm , the velocity of A in N and the velocity of Bcm in N

Acceleration NaA and NaBcm , the acceleration of A in N and the acceleration of Bcm in N
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11.2 Rotation matrices

The orientation of a set of mutually-perpendicular right-handed unit vectors bx, by, bz in a second set
of mutually-perpendicular right-handed unit vectors nx, ny, nz is frequently stored in a 3×3 rotation

matrix denoted bRn. The elements of bRn are defined as bRn
ij

∆= bi ············· nj (i, j = x, y, z)

All rotation matrices are orthogonal, which means
that its inverse is equal to its transpose and it can be
written as a table read horizontally or vertically.

bRn nx ny nz

bx
bRn

xx
bRn

xy
bRn

xz

by
bRn

yx
bRn

yy
bRn

yz

bz
bRn

zx
bRn

zy
bRn

zz

Rotation matrix example

The system has two sets of mutually-perpendicular right-handed unit vectors, namely bx, by, bz and
nx, ny, nz. These two sets of vectors are drawn in a geometrically suggestive way below. One way to
calculate the first row of the bRn rotation matrix is by expressing bx in terms of nx, ny, nz, and then
filling in the first row of bRn as shown below. Similarly, the second and third rows of bRn are calculated
by expressing by and bz in terms of nx, ny, nz, and filling in the second and third rows of bRn.

θ

θ

bx = cos(θ)nx − sin(θ)ny

by = sin(θ) nx + cos(θ) ny

bz = nz

bRn nx ny nz

bx cos(θ) -sin(θ) 0

by sin(θ) cos(θ) 0

bz 0 0 1

11.3 Angular velocity

As shown in equation (1), the angular velocity of a
reference frame B in a reference frame N can be cal-
culated directly from the rotation matrix that relates
bx, by, bz to nx, ny, nz and its time-derivative.

Since equation (1) contains Ṙij (i, j=x, y, z) it is clear
that angular velocity is a measure of the time-rate of
change of orientation.

Rij
∆= bi ············· nj (i, j = x, y, z)

NωωωωωωωωωωωωωB =
(
RxzṘxy + RyzṘyy + RzzṘzy

)
bx

+
(
RyxṘyz + RzxṘzz + RxxṘxz

)
by

+
(
RzyṘzx + RxyṘxx + RyyṘyx

)
bz

(1)

11.3.1 Simple angular velocity

Although equation (1) is a general relationship between the rotation matrix and angular velocity, it is
non-intuitive.1 Since angular velocity is complicated, most textbooks define simple angular velocity,
which is useful for two-dimensional analysis. The simple angular velocity of B in N is calculated as

NωωωωωωωωωωωωωB =
(simple)

± θ̇λλλλλλλλλλλλλ (2)

where λλλλλλλλλλλλλ is a vector fixed2 in both N and B. The sign of θ̇ λλλλλλλλλλλλλ is determined by the right-hand rule. If
increasing θ causes a right-hand rotation of B in N about +λλλλλλλλλλλλλ, the sign is positive, otherwise it is negative.

1One of the major obstacles in three-dimensional kinematics is properly calculating angular velocity.
2A vector λλλλλλλλλλλλλ is said to be fixed in reference frame B if its magnitude is constant and its direction does not change in B.

Copyright c© 1992-2009 by Paul Mitiguy 76 Chapter 11: Dynamics: Inverted pendulum on a cart



The following is a step-by-step process for calculating a simple angular velocity NωωωωωωωωωωωωωB :

• Identify a unit vector λλλλλλλλλλλλλ that is fixed in both N and B

• Identify a vector n⊥ that is fixed in N and perpendicular to λλλλλλλλλλλλλ

• Identify a vector b⊥ that is fixed in B and perpendicular to λλλλλλλλλλλλλ

• Identify the angle θ between n⊥ and b⊥ and calculate its time-derivative

• Use the right-hand rule to determine the sign of λλλλλλλλλλλλλ. In other words, point the four fingers of your
right hand in the direction of n⊥, and then curl them in the direction of b⊥. If you thumb points in
the direction of λλλλλλλλλλλλλ, the sign of λλλλλλλλλλλλλ is positive, otherwise it is negative.

11.3.2 Simple angular velocity example

The figure to the right has two reference frames, B and N . Since bz is fixed in
both B and N , the angular velocity of B in N is a simple angular velocity that
can be written as

NωωωωωωωωωωωωωB = -θ̇ bz

The following step-by-step process was used to calculate NωωωωωωωωωωωωωB :
• bz is a unit vector that is fixed in both N and B

• ny is fixed in N and perpendicular to bz

• by is fixed in B and perpendicular to bz

• θ is the angle between ny and by, and θ̇ is its time-derivative
• After pointing the four fingers of your right hand in the direction of ny and

curling them in the direction of by, your thumb points in the -bz direction.
Hence, the sign of bz is negative.

θ
B

11.3.3 Angular velocity and vector differentiation

The golden rule for vector differentiation calculates
Ndv
dt

, the ordinary-derivative of v with respect
to t in N , in terms of the following:

• Two reference frames N and B

• NωωωωωωωωωωωωωB , the angular velocity of B in N

• v, any vector that is a function of a single scalar variable t

•
Bdv
dt

, the ordinary-derivative of v with respect to t in B

Ndv
dt

=
Bdv
dt

+ NωωωωωωωωωωωωωB ×v (3)

Equation (3) is one of the most important formulas in kinematics because v can be any vector, e.g.,
a unit vector, a position vector, a velocity vector, a linear/angular acceleration vector, a linear/angular
momentum vector, or a force or torque vector.

11.3.4 Angular velocity and vector differentiation example

An efficient way to calculate the time-derivative in N of Lby is as follows:

N
d (Lby)

dt
=
(3)

B
d (Lby)

dt
+ NωωωωωωωωωωωωωB ×Lby

= 0 +
(
-θ̇bz

)
×Lby

= θ̇ Lbx

θ

L

B

N
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11.4 Angular acceleration

As shown in equation (4), the angular acceleration of a reference frame B
in a reference frame N is defined as the time-derivative in N of NωωωωωωωωωωωωωB .
NαααααααααααααB also happens to be equal to the time-derivative in B of NωωωωωωωωωωωωωB.
Note: Employ this useful property of angular acceleration when it is easier to compute
B
d NωωωωωωωωωωωωωB

dt
than it is to compute

N
d NωωωωωωωωωωωωωB

dt
.

NαααααααααααααB ∆=
N
d NωωωωωωωωωωωωωB

dt

=
B
d NωωωωωωωωωωωωωB

dt

(4)

Angular acceleration example

The figure to the right has two reference frames, B and N . Although the

angular acceleration of B in N is defined as NαααααααααααααB ∆=
Nd NωωωωωωωωωωωωωB

dt
, it is more

easily calculated with the alternate definition, i.e.,

NαααααααααααααB =
B
d NωωωωωωωωωωωωωB

dt
=

B
d (-θ̇ bz)

dt
= -θ̈ bz

θ
B

11.5 Position vectors

A point’s position vector characterizes its location from another point.3

The figure on the right shows three points No, A, and Bcm.
By inspection, one can determine:

• rA/No = xnx (A’s position vector from No)

• rBcm/A = Lby (Bcm’s position vector from A)

Bcm’s position vector from No is computed with vector addition, i.e.,

rBcm/No = rBcm/A + rA/No = Lby + xnx

L

A

B

N

x

11.6 Velocity

The velocity of a point Bcm in a reference frame N is denoted NvBcm and
is defined as the time-derivative in N of rBcm/No (Bcm’s position vector from
No). Note: Point No is any point fixed in N .

NvBcm
∆=

Nd rBcm/No

dt
(5)

3Since a position vector locates a point from another point and because a body contains an infinite number of points, a
body cannot be uniquely located with a position vector. In short, a body does not have a position vector.
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Velocity example

The figure to the right shows a point Bcm moving in reference frame N .
Differentiating Bcm’s position vector from No yields Bcm’s velocity in N .

NvBcm ∆=
N
d rBcm/No

dt

=
N
d (xnx + Lby)

dt

=
N
d (xnx)

dt
+

N
d (Lby)

dt

= ẋnx +
B
d (Lby)

dt
+ Nωωωωωωωωωωωωω B ×Lby

= ẋnx + 0 + -θ̇ bz ×Lby

= ẋnx + θ̇ Lbx

θ

L

A

B

N

x

11.7 Acceleration

The acceleration of a point Bcm in a reference frame N is denoted NaBcm and
is defined as the time-derivative in N of NvBcm (Bcm’s velocity in N).

NaBcm
∆=

Nd NvBcm

dt
(6)

Acceleration example

The figure to the right shows a point Bcm moving in reference frame N .
Differentiating Bcm’s velocity in N yields Bcm’s acceleration in N . a

NaBcm ∆=
N
d NvBcm

dt

=
N
d (ẋnx + θ̇ Lbx)

dt

=
Nd (ẋnx)

dt
+

Nd (θ̇ Lbx)
dt

= ẍnx +
Bd (θ̇ Lbx)

dt
+ Nωωωωωωωωωωωωω B × (θ̇ Lbx)

= ẍnx + θ̈ L bx + (-θ̇ bz) × (θ̇ Lbx)

= ẍnx + θ̈ Lbx + -θ̇
2
Lby

aThere are certain acceleration terms that have special names, e.g., “Coriolis”, “cen-
tripetal”, and “tangential”. Knowing the names of acceleration terms is significantly less
important than knowing how to correctly form the acceleration.

θ

L

A

B

N

x

11.8 Mass distribution

Mass distribution is the study of mass, center of mass, and inertia properties of systems components.
One way to experimentally determine an object’s mass distribution properties is to measure mass with
a scale, measure center of mass by hanging the object and drawing vertical lines, and measure moments
of inertia by timing periods of oscillation. Alternately, by knowing the geometry and material type, it is
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possible to calculate the mass, center of mass, and inertia properties. These calculations are automatically
performed in CAD and motion programs such as SolidWorks, Solid Edge, Inventor, Pro/E, Working Model,
MSC.visualNastran 4D, MSC.Adams, etc. In general, the quantities needed for dynamic analysis are:

• the mass of each particle, e.g., the mass of particle A is mA

• the mass of each body, e.g., the mass of body B is mB

• the central inertia dyadic of each body. Since B has a simple angular velocity in N , Izz (the moment
of inertia of B about Bcm for the bz axis) is sufficient for this analyses.

11.9 Contact and distance forces

One way to analyze forces is to use a free-body diagram to isolate a single body
and draw all the forces that act on it. Use the figure on the right to draw all the
contact and distance forces on the cart A and pendulum B.a

Quantity Description
Fc nx measure of control force applied to A

mA g -ny measure of local gravitational force on A

N ny measure of the resultant normal force on A

Rx nx measure of the force on B from A

Ry ny measure of the force on B from A

mB g -ny measure of local gravitational force on B

The resultant forces on A and B are

FA = (Fc − Rx) nx + (N − mA g − Ry) ny

FB = Rx nx + (Ry − mB g) ny

aWhen a force on a point is applied by another point that is part of the system being considered,
it is conventional to use action/reaction to minimize the number of unknowns. Notice that the
force on A from B is treated using action/reaction, whereas the force on A from N is not.

A

B

A

11.10 Moments

The moment of all forces on B about Bcm is4

MB/Bcm = rA/Bcm × (Rx nx + Ry ny) + rBcm/Bcm × (
-mB g ny

)

= -Lby × (Rx nx + Ry ny)

= -L Rx (by ×nx) + -LRy (by ×ny)

= [L cos(θ)Rx − L sin(θ)Ry] bz

4Use the rotation table to calculate the cross-products (by ×nx) and (by ×ny).
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11.11 Newton’s law of motion

Newton’s law of motion for particle A is FA = mA∗NaA, where: FA is the resultant of all forces on A; mA

is the mass of A; and NaA is the acceleration of A in N . Substituting into Newton’s law produces

(Fc − Rx)nx + (N − mAg − Ry)ny = mA ẍnx

Dot-multiplication with nx gives:

Fc − Rx = mA ẍ

Dot-multiplication with ny gives:

N − mA g − Ry = 0

Similarly, Newton’s law of motion for body B is FB = mB∗NaBcm, where: FB is the resultant of all forces
on B; mB is the mass of B; and NaBcm is the acceleration of B’s mass center in N . This produces

Rx nx + (Ry − mBg)ny = mB
(
ẍnx + θ̈ Lbx − θ̇2 Lby

)

Dot-multiplication with nx gives:a

Rx = mB
[
ẍ + θ̈ L (bx ·············nx) − θ̇2 L (by ·············nx)

]

= mB
[
ẍ + θ̈ L cos(θ) − θ̇2 L sin(θ)

]

aUse the rotation table to calculate dot-products.

Dot-multiplication with ny gives:a

(Ry − mBg) = mB
[
θ̈ L (bx ·············ny) − θ̇2 L (by ·············ny)

]

= mB
[
θ̈ L -sin(θ) − θ̇2 L cos(θ)

]

aUse the rotation table to calculate dot-products.

11.12 Euler’s planar rigid body equation

Euler’s planar rigid body equation for a rigid body B in a Newtonian reference frame N is

MB/Bcm
z =

(10.3)
Izz

NαααααααααααααB

where MB/Bcm
z is the nz component of the moment of all forces on B about Bcm, Izz is the mass moment

of inertia of B about the line passing through Bcm and parallel to bz, and NαααααααααααααB is the angular acceleration
of B in N . Assembling the terms and subsequent dot-multiplication with bz produces

L cos(θ)Rx − L sin(θ)Ry = -Izz θ̈

11.13 Summary of Newton/Euler equations of motion

Combining the results from Sections 11.11 and 11.12 gives

Fc − Rx = mA ẍ

N − mA g − Ry = 0

Rx = mB
[
ẍ + θ̈ L cos(θ) − θ̇2 L sin(θ)

]

(Ry − mBg) = mB
[
-θ̈ L sin(θ) − θ̇2 L cos(θ)

]

L cos(θ)Rx − L sin(θ)Ry = -Izz θ̈

θ

L

Fc
A

B

N

x

The unknown variables5 in the previous set of equations6 are Rx, Ry, N , x, and θ.

5Once θ(t) is known, θ̇(t) and θ̈(t) are known. Similarly, once x(t) is known, ẋ(t) and ẍ(t) are known.
6The methods of D’Alembert, Gibbs, Lagrange, and Kane, are more efficient than free-body diagrams for forming equations

of motion in that the unknown “constraint forces” Rx, Ry , and N are automatically eliminated.
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11.14 Summary of kinematics

This chapter presented a detailed analysis for forming equations of motion for an inverted pendulum on
a cart. Although some of the analysis is specific to this problem, many of the kinematic definitions and
equations are widely applicable. The important concepts are summarized in the following table.

Quantity How determined Specific to this problem

Rotation matrix SohCahToa

bRn nx ny nz

bx cos(θ) -sin(θ) 0
by sin(θ) cos(θ) 0
bz 0 0 1

Simple angular velocity NωωωωωωωωωωωωωB = ± θ̇λλλλλλλλλλλλλ NωωωωωωωωωωωωωB = -θ̇ bz

Angular acceleration NαααααααααααααB ∆=
Nd NωωωωωωωωωωωωωB

dt
NαααααααααααααB = -θ̈ bz

Position vector Inspection or rA/No = xnx

vector addition rBcm/No = xnx + Lby

Velocity NvBcm
∆=

Nd rBcm/No

dt
NvA = ẋnx

NvBcm = ẋnx + L θ̇ bx

Acceleration NaBcm
∆=

Nd NvBcm

dt
NaA = ẍnx

NaBcm = ẍnx + L θ̈ bx − L θ̇2 by
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