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Print your name and sign the honor code statement

You may use your course notes, homework, books, etc.

Write your answers on this handout

Where space is provided, show your work to get credit

If necessary, attach extra pages for scratch work

Best wishes for a fun vacation. Merry Christmas and Happy New Year!
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Total 100

F.1 (2 pts.) Miscellaneous

(a) (1 pt.) What is your Meyer-Briggs (human metrics) personality type?
Result:

(b) (1 pt.) Suppose you plan on teaching or TAing Dynamic Systems. Provide suggestions for
improving the course. Specifically, what you would add, remove, or change in the course (e.g.,
content, homework, book, lectures, etc.)?

Result:



F.2 (31 pts.) Coupled motions of Wilbur-force pendulum

i

I

Shown to the right is a rigid body B that is attached to a spring
at B., the mass center of B. The other end of the spring is
attached to point N, which is fixed in a Newtonian reference
frame N. The equations governing this model of the system are
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I
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mi + kpyx + k.0 =
Ié—i—kcx—l-kgﬁ =

Quantity Symbol Type

Mass of B m constant
Central moment of inertia of B about vertical I constant
Linear spring constant modeling extensional flexibility ke constant
Linear spring constant modeling torsional flexibility ko constant
Linear spring constant modeling coupled flexibility ke constant
Translational stretch of spring from equilibrium T dependent variable
Rotational stretch of spring from equilibrium 0 dependent variable

(a) (2 pts.) Write the ODEs in the matrix foom M X + BX + K X = 0, where x2 [ Z ]

Result:
ks e T _ 0
ke kg 6] |0

m 0 z 0 0 T
I H R
(b) (9 pts.) The solution to the previous set of ODEs has the form X (t)=UxeP! where p is a
constant (to-be-determined) and U is a non-zero 2x 1 matrix of constants (to-be-determined). Fill

in the two blanks in the following polynomial equation that governs the values of A 2. p2.
Note: the blanks only involve m, I, k., kg, k..
Result:



(¢) (6 pts.) For certain values of m, I, k,, kg, and k., the matrix ASEMIK = [ 110 110 ]
Find the eigenvalues and corresponding eigenvectors of A.
Result:
A=9 Ulz[ B ] Ao = 11 ng[ } ]
Imaginary
.................. s
EEEE
(2 pts.) Calculate the values of p1, p2, p3, p4 and R N N
draw their locations in the complex plane. ;

@ s = EVRL = £vE = 3 AR T S R

P34 = LA = V11 = £3.32:

........................................

(e) (1 pt.) The solution is stable/[neutrally stable|/unstable.

(f) (4 pts.) Write the solution for X (¢) in terms of the yet-to-be-determined constants ¢, ca, c3,
¢4, the sine and cosine functions, and t.
Result:

[ “"58 ] - [ 5 ] [ersin(30) + ez cos(31)} + [ : ] {es sin(332 1) + ey cos(332 1)}
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(g) (2 pts.) Determine ¢y, ¢, c3, ¢4 when z(0)=0.2, 6(0) =0, ©(0) =0, and 6(0) =0.
Result:

cp=0 co= -0.1 c3= 0 cy= 0.1

(h) (2 pts.) Using the aforementioned initial values, write explicit solutions for z(¢) and 6(%).
Result:

z(t) = 0.1 cos(3t) + 0.1 cos(3.32¢)
6(t) = -0.1cos(3¢) + 0.1 cos(3.32¢)

(i) (1 pt.) Using trigonometric identities, equation (2.19), and cos(a) = -cos(a+m), show that
your previous solution for z(¢) and 0(t) is

. T, . T
2(t) = 0.2 5in(-0.16¢ + ) sin(3.16¢ + ) 0(t) = 0.2 sin(-0.16 ) sin(3.16 )
= 0.2 cos(0.16 t) cos(3.16¢) = 0.2 sin(0.16 ¢ 4 ) sin(3.16 ¢)
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(j) (2 pts.) Give an interpretation of the time-behavior of z(¢) and 6(t).

Result:
Both z(t) and 6(t) exhibit the beat phenomena with a high-frequency of 3.16 24 and a low-frequency of 0.16 4.

sec sec

Since z(t) and 0(t) are coupled, z’s maximum amplitude coincides with #’s minimum amplitude (and vice-versa).
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F.3 (38 pts.) Linearization of equations of motion for a swinging spring

A straight, massless, linear spring connects a particle @ to a
point N, which is fixed in a Newtonian reference frame N. The -
system identifiers and governing equations are shown below.

Quantity Identifier Type
Local gravitational constant g constant
Mass of m constant
Natural spring length L, constant
Linear spring constant k constant
Spring stretch Y variable
“Pendulum angle” 0 variable
m(Ly+y)0 + 2mly + mgsin@) = 0
mi — m(Ln+y)0> + ky — mgcos(d) = 0

(1 pt.) Classify the previous equations by picking the relevant qualifiers from the following

1S[tJ:ncoupled Linear |Homogeneous| |Constant-coefficient| 1st-order Algebraic
|Coupled| [Nonlinear| Inhomogeneous Variable-coefficient |2nd-order] [Differentiall

(3 pts.)  Find the condition on y,,, such that y =1y,,, (a constant) and 6 =#6,,, =0

satisfy the nonlinear ODEs.

Result:

m

Ynom — Tg
(10 pts.) Using a Taylor series, linearize the differential equations in perturbations about
this nominal solution. In other words, define perturbations of y and 0 as

@/ é y - ynom (ynom iS constant) 5 é 0 - 91’10m (HDOIU :0)

and form a set of differential equations which are linear in 7, gj, éj, 0,0,0.
Result:

m(Ln+yn0m)5 + mga = 0

mgj—i—kgjzo



(d) (7 pts.) Replace y and 6 in the original nonlinear ODEs with

Y = U+ Ynom (Unom is the constant determined earlier) 0 = 5—}— Onom  (Bnom =0)

Assuming y, 37, g and 5, 5, and 6 are small and using the small-approximations technique

of Chapter 20, form a set of ODEs that are linear in y, 3.7, gj, 0,0,0.
Result:

m(Ln+yn0m)§ + mgé = 0
my + ky = 0

(e) (1 pt.) Classify your equations in part (3d) by picking the relevant qualifiers from the
following list.

|Unc0upled| |Linear] |Homogene0us| |Constant-coefficient] 1st-order Algebraic
Coupled Nonlinear Inhomogeneous  Variable-coefficient |2nd-order| |Differentiall

(f) (1 pt.) The linearized ODEs resulting from the Taylor series technique are identical to those
obtained from the small-approximations technique. [True]/False.

(g) (5 pts.) Find analytical solutions for 7(¢) and (t) when g = 9.8 m/sec?, m =1 kg, L, =0.5 m,

k=100 n/m, §(0) =0.1 m, 6(0) =1°, and 7(0) = 6(0) =0

y(t) = 0.1 cos(\/%t) = 0.1 cos(10%)
o(t) = 1° cos(MLnJgJ t) = 1° cos( Lngfmg t) = 1° cos(4.05¢)




(h)

(4 pts.) Make a rough sketch of your linearized solutions for y(¢) and 0(¢) for 0 < ¢ < 16 sec,
showing the relevant characteristics, e.g., amplitude, frequency, growth, decay, etc.

y(t) = y(t) + ypom = 0.1 cos(10¢) + 0.098 0(t) = 6(t) + Onom = 1° cos(4.05¢)
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(6 pts.) The computer solution for y(¢) and 6(¢) to the original nonlinear ODEs for

0 <t <16 sec are plotted below. Comment on the similarities and differences between the
plots you produced with the ones below. Give a reason for the similarities and differences.
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Similarities: Frequency, maximum amplitude Similarities: Frequency

Differences: Beat phenomenon, varying amplitude Differences: Amplitude, beat phenomenon

Reason for differences: Coupled and nonlinear Reason for differences: Coupled and nonlinear



F.4 (29 pts.) Dynamic response for an air-conditioner on a building
An air conditioner is bolted to the roof of a one story building.
The air conditioner’s motor is unbalanced and its eccentricity
is modeled as a particle of mass m attached to the distal end
of a rigid rod of length . When the motor spins with angular
speed (2, it causes the building’s roof of mass M to vibrate. The
stiffness and material damping in each column that supports
the roof is modeled as a linear horizontal spring (k) and linear
horizontal damper (b). Homework 4.5 showed that the ODE
governing the horizontal displacement = of the building’s roof is

(M4+m)& + 2bi + 2kz = mrQ? sin(Qt)
(a) (3 pts.) Express wy, ¢, A in terms of M, m, b, k, r so the ODE is

i+ 2Cwp i + wix = AQ?sin(Q)
Result:

— 2k _ b _
“n= VIEm C= o A= ¥
(b) (2 pts.) For certain values of M, m, b, k, and r, this ODE simplifies to
i+ 34 + 900z = 1x107* Q% sin(0t)

Calculate numerical values for w, and (.
Result:

wy = 30 24 ¢=0.05
(¢) (7 pts.) Fill in numerical values in the following expressions for z4(t), the steady-state part
of z(t).
Q (%) T (1)
20 7.94x107 #sin( 20 ¢+ -6.843°)
30 0.001  *sin( 30 £+ -90° )

40 2.25x107% *sin( 40 ¢+ -170.3° )




(d)

(e)

(14 pts.)  The building’s occupants complain that the roof shakes too much. Comment on
the effect small variations of M, m, b, k, and r have on: (, %, and the magnitude of z4(t).
Fill in each element in the table by writing — (decreases), 0 (no effect), + (increases), or 7 (if
it may decrease or increase). For the 2"¢-to-last column, assume the air conditioner’s normal

operating speed is 2 =28 %, and for last column, assume 2 = 32 %,

O~ 2820 O a 32 0
L] Ol | I
Balancing the motor (r—0) 0 0 - -
Increasing the motor speed (2 0 + 4F =
Decreasing the motor speed (2 0 = aF
Adding mass to the roof (increasing M) - | + +7 ?
Removing mass from the roof + — =7 ?
Stiffening the support columns (increasing k) = = = 4F
Adding damping to the columns (increasing b) | + 0 - -

(3 pts.) List three ways to change the motor and minimize the roof shaking.
Balance the motor, damp the motor, or operate Q> w, or Q <K w, .



