| Name | | |---------|--| | I TOTAL | | ME161 Final. Wednesday December 8, 2004 7:00-10:00 p.m. I certify that I upheld the Stanford Honor code during this exam _____ - Print your name and sign the honor code statement - You may use your course notes, homework, books, etc. - Write your answers on this handout - Where space is provided, show your work to get credit - If necessary, attach extra pages for scratch work - Best wishes for a fun vacation. Merry Christmas and Happy New Year! | Problem | Value | Score | |---------|-------|-------| | 1 | 6 | | | 2 | 13 | | | 3 | 31 | | | 4 | 20 | | | 5 | 6 | | | 6 | 15 | | | 7 | 9 | | | Total | 100 | | Final.1 (6 pts.) Miscellaneous (a) (1 pt.) Describe one or two things you enjoyed learning in ME161. Result: | (b) | (1 pt.) | Name the engineer, | scientist, | or mathematician | who first | did the following: | |-----|-----------|--------------------|------------|--------------------------|-----------|--------------------| | (~) | (- P ··) | | 20101120, | 01 111000110110101010101 | | a.a | - Considered sine and cosine as functions (not just the ratio of two sides of a triangle) - Invented the symbols $\pi = 3.1415...$, e = 2.71..., $i = \sqrt{-1}$, \sum for summations, Δx for finite differences, and f(t) for functions - Discovered a general equation for rotational motions of a rigid body - Created the foundations of the theory of differential equations - Discovered a simple technique for numerically integrating differential equations - Investigated analytical functions of a complex variable - Invented the Taylor series expansion of a function (concurrent with MacLaurin) - Studied mathematics under Johann Bernoulli at 14 years old - Extended Bernoulli's equation for incompressible fluid flow - Optimized the arrangement of masts on a ship - "Wrote the book" on the mathematical theory of music - Worked on cartography, magnetism, fire engines, ship building, and insurance - Lost 8 of his 13 children in infancy, went half blind at 28 and mostly blind at 59, lost his home to a fire, and still had a positive attitude ### (c) Any real, imaginary, or complex number can be expressed in magnitude-phase form. • (1 pt.) Express -2 in magnitude-phase form. $$-2 = e^{(m+2n\pi)i}$$ $n=0,1,2,...$ • (1 pt.) Why does multiplying two negative numbers produce a positive number? Using magnitude-phase form, show -2 * -2 = +4. • (2 pts.) Complex numbers and exponentiation Find *all* complex numbers (in Cartesian form) equal to the following. $$\sqrt{i} = \underline{\qquad} + \underline{\qquad} i \qquad \text{or} \qquad \underline{\qquad} + \underline{\qquad} i$$ $$1^{\frac{1}{2\pi}} = 1,$$ ## Final.2 (13 pts.) Sinusoidal transfer function and underdamped vibrations A dynamic system's response is governed by $\ddot{y} + \dot{y} + y = f(t)$ where $f(t) = 10 \sin(2t)$. (a) (2 pts.) Find the system's transfer function $$G(s) \stackrel{\Delta}{=} \frac{Y(s)}{F(s)} =$$ - (b) (3 pts.) Is the transfer function stable? Yes/No. Explain: - (c) (5 pts.) Find numerical values for the magnitude and phase of the sinusoidal transfer function. Magnitude = Phase = rad (d) (3 pts.) Find the steady-state response $y_{\rm ss}(t)$. $$y_{\rm ss}(t) =$$ ## Final.3 (31 pts.) Solution and stability of a tight-rope walker A tightrope walker A uses a rigid pole B to balance on a wire at a point N_o that is fixed in a Newtonian reference frame N. Right-handed sets of orthogonal unit vectors are fixed in N, A, and B, with: - n_y vertically upward - \mathbf{a}_{v} directed from N_{o} to S_{c} (the mass center of A and B) - **b**_x directed along the balancing pole - $\mathbf{n}_z = \mathbf{a}_z = \mathbf{b}_z$ perpendicular to the plane in which A and B move The following identifiers are useful in this analysis. | Quantity | Symbol | Type | |---|------------|---------------------------| | Mass of system formed by A and B | m | constant | | Distance from N_o to S_c | d | $\operatorname{constant}$ | | Related to mass distribution of system | I | $\operatorname{constant}$ | | Central moment of inertia of B for $\mathbf{b}_{\mathbf{z}}$ | I^{B} | $\operatorname{constant}$ | | Earth's sea-level gravitational constant | g | $\operatorname{constant}$ | | Feedback-control torque on B from A | T_z | specified variable | | Angle between \mathbf{n}_{y} and \mathbf{a}_{y} | $ heta_A$ | dependent variable | | Angle between \mathbf{n}_{x} and \mathbf{b}_{x} | θ_B | dependent variable | | Time | t | independent variable | (a) (1 pt.) The *nonlinear* equations of motion for the tightrope walker are $$I \ddot{\theta}_A + \neg m g d \sin(\theta_A) = \neg T_z$$ $I^B \ddot{\theta}_B = T_z$ Determine M, K, and G so that the **linearized** ODEs can be written in the matrix form $M \ddot{X} + K X = G T_z$ where $X \stackrel{\triangle}{=} \begin{bmatrix} \theta_A \\ \theta_B \end{bmatrix}$. $$\mathbf{Result:}$$ $$\left] \left[egin{array}{c} \ddot{ heta}_A \ \ddot{ heta}_B \end{array} ight] \, + \, \left[ight.$$ $$\left[\left[\begin{array}{c} \theta_A \\ \theta_B \end{array} \right] = \left[\begin{array}{c} \end{array} \right] T_z$$ (b) (3 pts.) Consider the homogeneous problem $T_z=0$. Assume a solution $X(t)=Ue^{pt}$ where p is a constant (to-be-determined) and U is a non-zero 2×1 matrix of constants (to-be-determined). Substitute this assumed solution into the matrix equation and find the equation that governs p and U. Express your results in terms of $\lambda \stackrel{\triangle}{=} -p^2$, $A \stackrel{\triangle}{=} M^{-1} K$, and the 2×2 identity matrix I. Result: (c) (4 pts.) Calculate the 2×2 matrix $A \stackrel{\triangle}{=} M^{-1} K$ in terms of m, g, d, I^B and I. Result: $$A = \left[\begin{array}{ccc} \end{array} \right]$$ (d) (4 pts.) Calculate λ_i (i = 1, 2). Result: $$\lambda_1 = \lambda_2 =$$ (e) **(2 pts.)** Find p_1, p_2, p_3 and p_4 . **Result:** $$p_1 = p_3 = p_3 = p_4 = p_4 = p_4$$ - (f) (2 pts.) The solution for $X(t) \stackrel{\triangle}{=} \left[\begin{array}{c} \theta_A(t) \\ \theta_B(t) \end{array} \right]$ is stable/neutrally stable/unstable. - (g) (2 pts.) A larger value of m corresponds to a less/more stable solution. A larger value of I corresponds to a less/more stable solution. (h) (6 pts.) Find U_1 and U_2 , the eigenvectors that correspond to λ_1 and λ_2 . Result: $$U_1 = \left[\begin{array}{c} \end{array} \right] \hspace{1cm} U_2 = \left[\begin{array}{c} \end{array} \right]$$ (i) (2 pts.) Assemble the solution for X(t) Result: Result: $$\left[\begin{array}{c} \theta_A(t) \\ \theta_B(t) \end{array} \right] \ = \ c_1 \left[\quad \right] \quad + \ c_2 \left[\quad \right] \quad + \ c_3 \left[\quad \right] \quad + \ c_4 \left[\quad \right]$$ - (j) (1 pt.) How are the constants c_1 , c_2 , c_3 , c_4 usually determined? - (k) (4 pts.) Sketch the system moving in its two modes. Clearly show how θ_A and θ_B are changing. Moving in Mode 1 Moving in Mode 2 ### Final.4 (20 pts.) State-space feedback control of a tight-rope walker One way to design an automatic control system for the tight-rope walker is to use the state-space method. The state space-method begins by defining the state matrix Y as (a) (1 pt.) Suppose the linearized ODEs for the tight-rope walker are $$100 \ddot{\theta}_A + -500 \theta_A = -T_z$$ $$25 \ddot{\theta}_B = T_z$$ Solve for $\ddot{\theta}_A$ and $\ddot{\theta}_B$ in terms of θ_A , θ_B , T_z , etc., Result: $$\ddot{\theta}_A = \ddot{\theta}_B =$$ (b) (4 pts.) Cast these ODEs into the state-space form $\dot{Y} = AY + B_cT_z$ by completing the following matrices. Result: $$\begin{bmatrix} \dot{\theta}_A \\ \dot{\theta}_B \\ \ddot{\theta}_A \\ \ddot{\theta}_B \end{bmatrix} = \begin{bmatrix} \theta_A \\ \theta_B \\ \dot{\theta}_A \\ \dot{\theta}_B \end{bmatrix} + \begin{bmatrix} \theta_Z \\ \theta_B \\ \dot{\theta}_A \\ \dot{\theta}_B \end{bmatrix} + \begin{bmatrix} \theta_Z \\ \theta_B \\ \dot{\theta}_A \\ \dot{\theta}_B \end{bmatrix}$$ (c) (4 pts.) An engineer decides to balance the tight-rope walker using a feedback control law for T_z that is written in terms of the "feedback control constants" k_1 , k_2 , k_3 , k_4 , as $$T_z = k_1 \theta_A + k_2 \theta_B + k_3 \dot{\theta}_A + k_4 \dot{\theta}_B = \begin{bmatrix} k_1 & k_2 & k_3 & k_4 \end{bmatrix} \begin{bmatrix} \theta_A \\ \theta_B \\ \dot{\theta}_A \\ \dot{\theta}_B \end{bmatrix} = {}^+K_c Y$$ Rewrite the ODEs in the state-space form $\dot{Y} = \overline{A} Y$ in terms of k_1, k_2, k_3, k_4 , and numbers. **Result:** $$\dot{Y} = \left[\begin{array}{c} \\ \\ \end{array} \right] Y$$ (d) (1 pt.) Using physical intuition, **guess** at the signs of k_1 , k_2 , k_3 , and k_4 so that if you started with $\theta_A=10^\circ$ and $\theta_B=0^\circ$, you could bring this system to rest with $\theta_A=0^\circ$ and $\theta_B=0^\circ$. Circle — if you think the number is negative, $\mathbf{0}$ if you think the number is zero, or $\mathbf{+}$ if you think the number is positive. In other words, should the coefficients of θ_A , θ_B , $\dot{\theta}_A$, and $\dot{\theta}_B$ be negative, zero, or positive in order to bring this system to rest at $\theta_A=\theta_B=0^\circ$. $$T_z = (\ +\ \mathbf{0}\ -\)*\theta_A \ +\ (\ +\ \mathbf{0}\ -\)*\theta_B \ +\ (\ +\ \mathbf{0}\ -\)*\dot{\theta}_A \ +\ (\ +\ \mathbf{0}\ -\)*\dot{\theta}_B$$ (e) (2 pts.) The process of solving for Y(t) begins by assuming a solution of the form $Y(t) = U e^{\lambda t}$ where λ is a constant (to be determined), and U is a non-zero 4×1 matrix of constants (to be determined). After substituting this assumed solution into the governing ODE, the matrix equation that governs λ and U is $$(-\lambda I + \overline{A}) U = 0$$ The unknowns in the previous equation are λ and U. Classify the previous matrix equation by picking the relevant qualifiers from the following list. | Uncoupled | Linear | Homogeneous | ${f Algebraic}$ | |-----------|-----------|---------------|-----------------| | Coupled | Nonlinear | Inhomogeneous | Differential | - (f) (2 pts.) How does one solve for λ ? - (g) (3 pts.) The polynomial equation that relates λ to k_1 , k_2 , k_3 , and k_4 is (you do not need to show this) $$\lambda^4 + (0.01 k3 - 0.04 k4) \lambda^3 + (0.01 k1 - 0.04 k2 - 5) \lambda^2 + (0.4 k4) \lambda + (0.4 k2) = 0$$ Determine whether k_i (i=1,2,3,4) must be **negative**, **zero**, **positive**, or **undetermined** for the roots of λ to have negative real parts so that $Y = Ue^{\lambda t}$ is stable. #### **Result:** | Feedback Control Constant | Negative, zero, positive, or undetermined | |---------------------------|---| | k_1 | negative/zero/positive/undetermined | | k_2 | ${\it negative/zero/positive/undetermined}$ | | k_3 | ${ m negative/zero/positive/undetermined}$ | | k_4 | negative/zero/positive/undetermined | (h) (1 pt.) Since the feedback control law is $T_z = k_1 \theta_A + k_2 \theta_B + k_3 \dot{\theta}_A + k_4 \dot{\theta}_B$ and you know some (or all) of the signs of k_1 , k_2 , k_3 , and k_4 , circle the correct signs in the following equation. Result: $$T_z = (+ \mathbf{0} -) * \theta_A + (+ \mathbf{0} -) * \theta_B + (+ \mathbf{0} -) * \dot{\theta}_A + (+ \mathbf{0} -) * \dot{\theta}_B$$ (i) (2 pts.) Determine the values of λ that satisfy its polynomial equation when the system is uncontrolled, i.e., $k_1 = k_2 = k_3 = k_4 = 0$. Result: $$\lambda_1 = \lambda_2 = \lambda_3 = \lambda_4 = \lambda_4 = \lambda_5$$ (j) (1 pts.) The uncontrolled system is stable/neutrally stable/unstable. ### Final.5 (6 pts.) Cruise control for a car A model for the speed v of a car of mass m includes unmodeled forces $F_{\rm disturbance}$, an air-resistance drag force $F_{\rm Drag}$, and the control force F_c (exerted by the engine and wheels) that tries $\underline{\mathbf{F_c}}$ to move the car at a desired (nominal) speed $v_{\rm nom}$. $m \dot{v} = F_c - F_{\mathrm{Drag}} - F_{\mathrm{disturbance}}$ (a) (2 pts.) Determine $F_{c\text{nom}}$, the value of F_c required so $v = v_{\text{nom}}(t)$ when $F_{\text{disturbance}} = 0$. $$F_{c \text{nom}} =$$ ## (b) **(2 pts.)** After separating F_c into two terms as shown to the right, rewrite the ODE in terms of \widetilde{v} [the *error* between the actual value of v and the desired (nominal) value of v]. $$F_c = F_{c \, \mathrm{nom}} + \widetilde{F}_c$$ $\widetilde{v} \stackrel{\Delta}{=} v - v_{\mathrm{nom}}$ = (c) (2 pts.) What advantage does this model that includes air-resistance (drag) have over a model that does not include air-resistance? Explain. # Final.6 (15 pts.) Proportional (P) feedback control for a simple car model One choice for \widetilde{F}_c is a **proportional control law** of the form $\widetilde{F}_c = -k_p * \widetilde{v}$ where k_p is a constant. (a) (7 pts.) Assuming $F_{\text{disturbance}}$ is **constant**, solve for $\widetilde{v}(t)$ in terms of $F_{\text{disturbance}}$, m, k_p , t, and the initial error $\widetilde{v}(0)$. - (b) (1 pt.) When $F_{\text{disturbance}}$ is constant, the steady-state error is $\tilde{v}_{\text{ss}} =$ - (c) (1 pt.) Making k_p small/large & negative/positive gives the most stable solution for $\widetilde{v}(t)$ - (6 pts.) Find the values of k_p that satisfy the following specifications for a 1000 kg car. | Design specification | k_p | |--|-------| | The steady-state error in response to $F_{\text{disturbance}} = 800 \text{ n}$ is -2 $\frac{\text{m}}{\text{sec}}$ | | | With $F_{\rm disturbance} = 0$, the car goes from rest to 90% of its desired speed within 5 sec | | ### (9 pts.) Proportional-Integral (PI) cruise control for a simple car model One choice for \widetilde{F}_c is a **proportional-integral control law** $\widetilde{F}_c = -k_p * \widetilde{v} + -k_i * \int\limits_{\overline{t}=0}^t \widetilde{v} \, d\overline{t}$ $$\widetilde{F}_c = -k_p * \widetilde{v} + -k_i * \int_{\bar{t}=0}^t \widetilde{v} \, d\bar{t}$$ k_p and k_i are constants. (a) (3 pts.) Write a 2^{nd} -order, inhomogeneous, ODE in standard form for $\widetilde{v}(t)$. - (1 pt.) When $F_{\text{disturbance}}$ is constant, the steady-state error is $\tilde{v}_{\text{ss}} =$ - (c) (5 pts.) Find values of k_p and k_i that satisfy the following specifications for a 1000 kg car. | Design specification | k_p | k_i | |---|-------|-------| | With $F_{\text{disturbance}} = 0$, the car goes from rest and settles to within 1% | _ | | | of its desired speed within 5 sec with a maximum overshoot of 2% | | |