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e Print your name and sign the honor code statement
e You may use your course notes, homework, books, etc.

Write your answers on this handout

Where space is provided, show your work to get credit

If necessary, attach extra pages for scratch work
Best wishes for a fun vacation. Merry Christmas and Happy New Year!

Problem Value Score

1 6
2 13
3 31
4 20
5 6
6 15
7 9

Total 100

Final.1 (6 pts.) Miscellaneous

(a) (1 pt.) Describe one or two things you enjoyed learning in ME161.
Result:
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(b) (1 pt.) Name the engineer, scientist, or mathematician who first did the following:

e Considered sine and cosine as functions (not just the ratio of two sides of a triangle)

Invented the symbols m=3.1415..., e=2.71..., i=+/-1, 3 for summations, Az for finite
differences, and f(t) for functions

Discovered a general equation for rotational motions of a rigid body

Created the foundations of the theory of differential equations

Discovered a simple technique for numerically integrating differential equations
Investigated analytical functions of a complex variable

Invented the Taylor series expansion of a function (concurrent with MacLaurin)

Studied mathematics under Johann Bernoulli at 14 years old

Extended Bernoulli’s equation for incompressible fluid flow

Optimized the arrangement of masts on a ship

“Wrote the book” on the mathematical theory of music

Worked on cartography, magnetism, fire engines, ship building, and insurance

Lost 8 of his 13 children in infancy, went half blind at 28 and mostly blind at 59, lost his
home to a fire, and still had a positive attitude

(c) Any real, imaginary, or complex number can be expressed in magnitude-phase form.

(1 pt.) Express -2 in magnitude-phase form.

2 = el H2mi 01,2, ..

(1 pt.) Why does multiplying two negative numbers produce a positive number?
Using magnitude-phase form, show -2 % -2 = +4.

(2 pts.) Complex numbers and exponentiation
Find all complex numbers (in Cartesian form) equal to the following.

Vi = + i or + i
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Final.2 (13 pts.) Sinusoidal transfer function and underdamped vibrations
A dynamic system’s response is governed by § + ¢ + y = f(t) where f(t) = 10 sin(2¢).

(a) (2 pts.) Find the system’s transfer function

(b) (3 pts.) Is the transfer function stable? Yes/No.
Explain:

(¢c) (5 pts.) Find numerical values for the magnitude and phase of the sinusoidal transfer function.

Magnitude = Phase = rad

(d) (3 pts.) Find the steady-state response y(t).

Yss (t) =
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Final.3 (31

A tightrope walker A uses a rigid pole B to balance on a wire at a point
N, that is fixed in a Newtonian reference frame N. Right-handed sets
of orthogonal unit vectors are fixed in N, A, and B, with:

The following identifiers are useful in this analysis.

pts.) Solution and stability of a tight-rope walker

ny horizontal and to the right

n, vertically upward

a, directed from N, to S, (the mass center of A and B)

by directed along the balancing pole

n, =a, =b, perpendicular to the plane in which A and B move

Quantity Symbol Type

Mass of system formed by A and B m constant
Distance from N, to S. d constant
Related to mass distribution of system I constant
Central moment of inertia of B for b, I8 constant
Earth’s sea-level gravitational constant g constant
Feedback-control torque on B from A T, specified variable
Angle between n, and a, 04 dependent variable
Angle between n, and b, 05 dependent variable
Time t independent variable

(a)

(1 pt.) The nonlinear equations of motion for the tightrope walker are

104 + -mgdsin(fy) = -T.
%6y = T,

Determine M, K, and G so that the linearized ODEs can be written in the matrix form

MX + KX = GT, WhereXé[eA].
0]
a1-1 1=

Op
Result:
i
2]
OB
(3 pts.) Consider the homogeneous problem 7T,=0. Assume a solution X (t)=Ue?" where p is
a constant (to-be-determined) and U is a non-zero 2x1 matrix of constants (to-be-determined).
Substitute this assumed solution into the matrix equation and find the equation that governs p

and U. Express your results in terms of A = %, A S MK , and the 2x 2 identity matrix I.
Result:
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(¢c) (4 pts.) Calculate the 2x2 matrix A 2 MK in terms of m, g, d, I® and I.
Result:

(d) (4 pts.) Calculate \; (¢ =1,2).
Result:

Al = Ay =

(e) (2 pts.) Find py, p2, p3 and py.
Result:

p1 = p3 =

p2 = ps =

04(t)

(f) (2 pts.) The solution for X (t) 2 [ 0y (1)

] is stable/neutrally stable/unstable.

o~

(g) (2 pts.) A larger value of m corresponds to a less/more stable solution.
A larger value of I corresponds to a less/more stable solution.
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(h) (6 pts.) Find U; and Us, the eigenvectors that correspond to A; and Ag.
Result:

[ ] el ]

(i) (2 pts.) Assemble the solution for X (¢)
Result:

) -ol Tl ] ool ] enl ]

(j) (1 pt.) How are the constants ¢, cg, c3, ¢4 usually determined?

(k) (4 pts.) Sketch the system moving in its two modes. Clearly show how 64 and fpare changing.

Moving in Mode 1 Moving in Mode 2
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Final.4 (20 pts.) State-space feedback control of a tight-rope walker
One way to design an automatic control system for the tight-rope walker is
to use the state-space method. The state space-method begins by defining

the state matrix Y as
04

O
04
OB

11>

Y

(a) (1 pt.) Suppose the linearized ODEs for the tight-rope walker are

10064 + -50004 = -T,
%0 = T,
Solve for 64 and 05 in terms of 0.4, 0, T, etc.,
Result:
04 =
Op =

(b) (4 pts.) Cast these ODEs into the state-space form Y = AY + B.T, by completing the fol-
lowing matrices.

Result: ]
0, O
0 B 93
04 04 *
0 B HB

(c) (4 pts.) An engineer decides to balance the tight-rope walker using a feedback control law for
T, that is written in terms of the “feedback control constants” ki, ko, k3, k4, as

T, = kiOa + koOp + k304 + kyOp = [ ki ke ks ka]| = TK.Y

Rewrite the ODEs in the state-space form Y = AY in terms of ki, ko, k3, k4, and numbers.
Result:
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(d)

()

(1 pt.) Using physical intuition, guess at the signs of k1, ko, k3, and k4 so that if you started
with 0,4=10° and §p=0°, you could bring this system to rest with §,=0° and 8p=0°. Circle —
if you think the number is negative, 0 if you think the number is zero, or + if you think the
number is positive. In other words, should the coefficients of 04, 0, HA, and 93 be negative,
zero, or positive in order to bring this system to rest at 64 = 05 =0°.

Result:

T, = (+0—)%bs + (+0 = )x05 + (+0—)x0s + (+0 = )x0p

(2 pts.) The process of solving for Y () begins by assuming a solution of the form Y (t) = U e
where X is a constant (to be determined), and U is a non-zero 4 x 1 matrix of constants (to be
determined). After substituting this assumed solution into the governing ODE, the matrix
equation that governs A and U is

(AL+A)U =0
The unknowns in the previous equation are A and U. Classify the previous matrix equation by
picking the relevant qualifiers from the following list.

Uncoupled Linear Homogeneous Algebraic
Coupled Nonlinear Inhomogeneous Differential

(2 pts.) How does one solve for A7

(3 pts.) The polynomial equation that relates A to ki, ko, k3, and k4 is (you do not need to
show this)
A+ (0.01k3 —0.04k4) X + (0.01k1 —0.04k2 —5) A% + (0.4k4) X + (0.4k2) = 0

Determine whether k; (i=1,2,3,4) must be negative, zero, positive, or undetermined for the
roots of A to have negative real parts so that ¥ =Ue* is stable.

Result:

Feedback Control Constant Negative, zero, positive, or undetermined
k1 negative/zero/positive/undetermined
ko negative/zero/positive/undetermined
ks negative/zero/positive/undetermined
k4 negative/zero/positive/undetermined

(1 pt.) Since the feedback control law is T, = k164 + ko0p + k3 04 + kq0p and you know
some (or all) of the signs of k1, ko, k3, and k4, circle the correct signs in the following equation.
Result:

T, = (4+0—=)%x04 + (+0 —=)x0p + (+0—=)%04 + (+0—)x0p

(2 pts.) Determine the values of A that satisfy its polynomial equation when the system is
uncontrolled, i.e., k1 = ko = k3 = k4 = 0.
Result:
Al = Ay =
A3 = Ay =
(1 pts.) The uncontrolled system is stable/neutrally stable/unstable.
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Final.5 (6 pts.) Cruise control for a car UE Di Fig
A model for the speed v of a car of mass m includes unmodeled <Fdiﬂ"ba"°e

control force F, (exerted by the engine and wheels) that tries F,
to move the car at a desired (nominal) speed vyom.

forces Flgisturbance, an air-resistance drag force FDrag, and the me
> ‘ ‘

mo = Fc - FDrag - Fdisturba.nce

(a) (2 pts.) Determine Fi,y,, the value of F, required so v =wvpom(t) when Fgisturbance = 0.

Fcnom =

(b) (2 pts.)

After separating F, into two terms as shown to the right, rewrite the ODE =
in terms of v [the error between the actual value of v and the desired (nominal) Fe = Fenom + I

value of v]. v — Vpom

(¢) (2 pts.) What advantage does this model that includes air-resistance (drag) have over a
model that does not include air-resistance? Explain.

Final.6 (15 pts.) Proportional (P) feedback control for a simple car model

F., = -k, xv | where k, is a constant.

One choice for ﬁc is a proportional control law of the form

(a) (7 pts.) Assuming Fisturbance 18 constant, solve for v(t) in terms of Faisturbance, M, kp, t,
and the initial error v(0).
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(b) (1 pt.) When Fgisturbance 1S constant, the steady-state error is g =

(c) (1 pt.) Making k, small/large & negative/positive gives the most stable solution for v(t)
(d) (6 pts.) Find the values of k, that satisfy the following specifications for a 1000 kg car.

Design specification ky

The steady-state error in response to Fgisturbance =800 1 is -2 -

With Fgisturbance = 0, the car goes from rest to 90% of its desired speed within 5 sec

Final.7 (9 pts.) Proportional-Integral (PI) cruise control for a simple car model

~ ~ t _
One choice for F, is a proportional-integral control law | F, = -k, «0 + -k;x [ vdt| where

t=0

k, and k; are constants.

(a) (3 pts.) Write a 2"¢-order, inhomogeneous, ODE in standard form for ().

(b) (1 pt.) When Fgisturbance 1S constant, the steady-state error is g =

(c) (5 pts.) Find values of k, and k; that satisfy the following specifications for a 1000 kg car.

Design specification k, k;

With Fgisturbance =0, the car goes from rest and settles to within 1%
of its desired speed within 5 sec with a maximum overshoot of 2%
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