Introduction to MATLAB
Albert Honein

Prepared for E155A, Stanford University

1 OVERVIEW

What is MATLAB? MATLAB, short for Matrix Laboratory, is a programming language for scientific calcu-
lations and graphic visualization of functions and data sets. It has hundreds of built-in routines for wide variety
of computations. In addition, MATLAB has extensive add-on software modules, called toolboxes, used for a
wide variety of disciplines, including statistics, image and signal processing, control systems designs, financial
analysis, and optimization.

MATLAB’s usage that is of interest to us includes plotting functions, two and three-dimensional graphics,
plotting vector fields, calculation of definite integrals, data analysis, solution of algebraic nonlinear equations
(e.g. polynomials), calculations with matrices, solution of linear systems of equations, and numerical solution
of ordinary differential equations.

Where to find MATLAB? For those who own a personal computer, “The Student Edition of MATLAB” is
available at the bookstore for about $100, which is $40 more than what it costs to obtain the manual, which is
included with the program itself. This is a bargain price for excellent software, and it is highly recommended
that you get your own copy of it to take with you when you leave Stanford.

For those who don’t own a personal computer, or if you choose not to make this investment, you will find that
MATLAB is available on a wide variety of platforms around campus. The fastest version is on the Unix machines
connected to the Leland system. Most of the MacIntosh’s on campus have MATLAB installed, including those
in the Terman Engineering Computer Cluster (room 104), Terman library, Green library, first floor of Meyer
library, and the computer cluster on the second floor of Tressider Union.

How to start MATLAB? On Unix workstations, the X Windows system makes working on a Unix machine
much easier. When you get your account:

e Login and type x at the shell prompt to run the X Windows system.
e Type matlab at the shell prompt in any xterm window.

e Once in MATLAB the prompt >> is displayed. This means that you are now in MATLAB command
window and you can start using MATLAB.

On the Mags:
e Open up the MATLAB folder in the applications folder and double click on the icon named MATLAB.

e If under the applications folder, MATLAB is listed as an Optional software, you need to download the
whole folder of MATLAB onto the hard drive from the server. Read the Optional software instructions
available there. The download might take up to 30 minutes.

We assume now that you were able to start MATLAB and you are facing the MATLAB command window
with the MATLAB prompt >> or EDU >>.

2 MATLAB AS A CALCULATOR

Conventions. MATLAB uses conventional decimal notation, with an optional decimal point and leading
plus or minus sign, to denote real numbers. Scientific notation is allowed: a real number followed immediately
(no spaces) by the letter e and an integer n (positive or negative) results in a new number equal to the initial
number multiplied by 10”. Imaginary numbers are obtained by using either i or j as a suffix. Valid numeric
examples:

3 -99 -1.01
8.027e-19 4.022e24 i
4i -6.28] -7.01e51

Basic operations and precedence. The basic mathematical operators are +, -, *, /, and ~, which are used
for addition, subtraction, multiplication, division, and exponentiation respectively. For example, type 1+1 at
the command prompt and hit the Enter key, the output will be:

>> 1+1
ans =
2

Other examples:

>> ixi >> 3i + 5 >> j°.5
ans = ans = ans =
-1 5.0000 + 3.00001 0.7071 + 0.70711

Arithmetic formulas are evaluated from left to right with exponentiation being done first, followed by mul-
tiplication and division, and finally by addition and subtraction. Consider these two examples:

>> 2+43%4 >> 6/3%2
ans = ans =
14 4

In the first example, the answer is 14 and not 5 *x 4 = 20 because of the precedence of * over +. In the second
one, the answer is 4 and not 6/6 = 1 since / and * have the same precedence but / is evaluated first because it
is at the left of *.

MATLAB allows the use of parenthesis to change the order of evaluating formulas and to make them clearer.
Expressions in parentheses are evaluated first. Make sure you understand the following examples (read by rows):

>> 2+3%4 >> (2+3) x4
ans = ans =

14 20

>> 2%x2°3 >> (2%2)°3
ans = ans =

16 64

>> -2°.5 >> (-2)".5
ans = ans =
-1.4142 0.0000 + 1.4142i
>> (2+3i)°3

ans =

-46.0000 + 9.00001

MATLAB command window is user friendly. The Backspace, Delete, Right, and Left arrow keys can be
used when typing at the command window. Also, previous expressions executed at the command window can
be retrieved using the Up and Down arrow keys.

Commands in MATLAB. MATLAB allows issuing commands at the command window. Like calculating
formulas, commands are issued by typing them at the command prompt and hitting the Enter key. We introduce
first the format command which controls the display of numbers as in the following examples:

>> 1/3 >> format long >> format long e
ans = >> 1/3 >> 1/3
0.3333 ans = ans =

0.33333333333333 3.333333333333333e-01
>>format short e >> format short >> format Short
>> 1/3 >> 1/3 7?77 Error using ==> format
ans = ans = Unknown command option.
3.3333e-01 0.3333

The last example shows that MATLAB is case sensitive; it distinguishes between uppercase and lowercase
letters.

Other commands that can be introduced at this stage are the exit and help commands. exit is used for
aborting MATLAB. help topic gives help on the specified topic which is, in general, a command name. help,
by itself, lists all primary help topics. Examples:

>> help exit >> help abort
EXIT Exit from MATLAB. abort.m not found.
EXIT terminates MATLAB.

In general, the help command displays elaborate explanation: be patient in using it while you become more
familiar with MATLAB structure. A section on how to obtain online help is given later.

Mathematical functions. MATLAB has a large number of built-in standard mathematical functions. At the
command prompt, type help elfun to obtain a list of elementary mathematical functions. Familiar functions
to you include:

sqrt, sign

exp, log, log10 (Exponentials)

sin, cos, tan, cot, sec, csc (Trigonometric)

asin, acos, atan, acot (Inverse Trigonometric)

sinh, cosh, tanh (Hyperbolic)

asinh, acosh, atanh (Inverse Hyperbolic)

abs, angle, conj, imag, real (Complex)

fix, floor, ceil, round, mod (Rounding and Remainder)

Type help name of the function to get more details. These functions are used by including their argument
between parenthesis:

>> sqrt(-2)
ans =
0 + 1.4142i

This shows that taking the square root of a negative number is not an error; the appropriate complex result is
produced automatically.

3 VARIABLES

In order to use MATLAB for more than a scientific calculator, we need to learn about variables. Like any other
high-level language, MATLAB uses variables to store numerical/string values for later manipulations. Variables
in MATLAB are essentially of one kind: rectangular matrices (or arrays) formed of columns and rows whose

elements can be numbers or formulas of numbers. The elements can also be strings (collection of characters).
A matrix of m rows and n columns has the form

aii @12 a3z - Qip
a21 a22 a3 --- Q2p
Am1 Am2 Am3 ot Omn

where a;; is the element in row ¢ and column j.

A variable associated with a scalar, or simply one number, is represented by a matrix of one row and one
column. A variable associated with a vector (collection of numbers) is represented either by a matrix formed of
one row (called row vector) or by a matrix formed of one column (called column vector). We illustrate below
the way variables are created and used in MATLAB by using scalar variables. Of course, the concepts apply to
the more general variables, which are associated with rectangular matrices. Manipulating and using variables
associated with vectors and matrices are discussed in subsequent sections.

Creating and displaying variables. The simple command statement

>> monthly salary = 0.375%4
monthly salary =
1.5

creates a scalar variable (1 x 1 matrix) and stores the value 1.5 in it. In subsequent calculations, this variable
can be used like any number:

>> yearly_salary = 12xmonthly salary
yearly_salary =
18

In the previous section, we evaluated arithmetic expressions without assigning them to any variable and the
output was of the form ans = number. MATLAB assigns the most recent calculated expression to the default
variable named ans. If the value of ans is required in later calculations, it is necessary to store that value
in a new variable, ans_save=ans, for example. This is because the value of ans changes automatically when
evaluating an expression that is not assigned to any variable:

>> 0.375%4
ans =
1.5000

>> ans*12
ans =

18

The value of any variable is displayed by typing its name and hitting the Enter key. The output after
executing commands can be suppressed by including a semicolon ; at the end of the command. Compare these
two examples:

>> ms = 1.5; >>ms = 1.5;ys = 12*ms
>> ys = 12*ms; ys =

>> ys 18

ys =

18

Current variables in use can be listed using the commands who and whos. If we type who after executing all
the commands from the beginning of this section, we obtain

>> who

Your variables are:

ans ms ys

monthly salary yearly_salary

Clearing variables. Variables will retain their values unless we assign them different ones or clear them using
the command clear. The command clear list of variable_names clears the corresponding variables while
clear by itself clears all variables used from the beginning of the MATLAB session.

>> ms= 1.5; ms=4.5; ys=12#ms;

>> ms

ms =

4.5000

>> clear ms ys

>> ms

77?7 Undefined function or variable ’ms’.

Warning! The value of a variable is remembered but not the formula or whatever procedure was used to
obtain it. Assume we issue the two commands ms= 1.5 and ys=12#ms. ys will be assigned 18. If we then
change ms to 4.5 using ms= 4.5, ys will not be changed to 12ms = 54. It will retain its value unless we issue
again the command ys=12*ms (or some other command):

>> ms= 1.5;ys=12*ms

ys =

18

>> ms= 4.5;

>> ys

ys =

18

>> ys=12*ms

ys =

54

Rules for naming variables. Variable names must always begin with a letter of the alphabet and the
remaining characters may also include numbers and the underscore character. No other special characters can
be used. x1, temperature, and Velocity.2 are all valid variable names. MATLAB uses only the first 31
characters of a variable name. It is not recommended to use MATLAB commands like format, exit, help, etc.
as variable names. Remember that MATLAB is case sensitive; it distinguishes between uppercase and lowercase
letters. A and a are not the same variable:

>> a=2

77?7 Undefined function or variable ’A’.

MATLAB does not require any type of declarations or dimension statements. When MATLAB encounters
a new variable name, it automatically creates the variable and allocates the appropriate amount of storage. If
the variable already exists, MATLAB changes its contents and, if necessary, allocates new storage.

Scalar constants. MATLAB has a number of predefined mathematical constants. Some of them are:

pi m = 3.14159265...

i, j Imaginary units, v/—1
realmin Smallest floating-point number
realmax Largest floating-point number

Examples:

>> realmin
ans =
2.2251e-308
>> realmax
ans =
1.7977e+308

These constants are treated like any other user defined variables; their values can be changed by the user:

>> pi

ans =
3.1416

>> pi=1; pi
pi =

1

When the command clear is issued, these constants got reassigned their MATLAB original values:

>> i=1

i =

1

>> clear

>> i

ans =

0 + 1.0000i

If we need to reassign the imaginary unit to i without clearing all the other variables, we can simply use clear
iori= (-1)".5.

4 VECTORS

Constructing row vectors. Assume we want to compute the natural logarithm of the numbers 1, ..., 10. We
can proceed and issue the commands x=1og(1), x=1log(2), etc. Instead of doing this, we can construct a row
vector x by including the numbers, separated by blanks or commas, between brackets and then apply the log
function on it:

>> x=[1234517; log(x)
ans =
0 0.6931 1.0986 1.3863 1.6094

When formulas are used as elements, the use of commas to separate the elements is recommended. Study
the following examples:

>> a=2; x=[a+2 -3 4/2]

x =
4 -3 2

>> x=[a+2, -3, 4/2]
x =

4 -3 2

>> x=[a+2 -3, 4/2]
x =

4 -3 2

>> x=[(a+2 -3), 4/2]

Nl

X
1
Constructing vectors with equally spaced elements. MATLAB has two commands for building vectors
with equally spaced elements. The first is the colon notation : whose syntax is

x = [starting value :increment : mazimum value]
>> x=[1:.5:2.5]

X =
1.0000 1.5000 2.0000 2.5000

If we specify 2.4 as the maximum value in the example above, then MATLAB will not assign 2.4 as an
element of x:

>> x=[1:.5:2.4]

X =

1.0000 1.5000 2.0000

>> x=[1:.5:2.9]

x =

1.0000 1.5000 2.0000 2.5000

If the increment is omitted, it is assumed to be 1:

>> x=[1.1:7]
X =

1.1000 2.1000 3.1000 4.1000 5.1000 6.1000
If we need x to have specified first and last elements, we can use the linspace function which has the syntax
x = linspace(first_element,last_element, num_of _elements).
>> x=linspace(1,2.4,5)

X=
1.0000 1.3500 1.7000 2.0500 2.4000

Constructing column vectors. The colon notation and linspace function produce a row vector. Column
vectors can be obtained from row vectors using the transpose operator .’ as in the example below:

>> x=[1:2:5] >> y=x.’
x = y =
135 1

3

5

The complex conjugate operator is ’ by itself. It is equivalent to .’ for real vectors:

>> z=[1+1,1+2i]; 2z’ >> z=[1,2];=z’
ans = ans =

1.0000 - 1.0000i 1

1.0000 - 2.00001 2

>> z.? >> z.?

ans = ans =

1.0000 + 1.0000i 1

1.0000 + 2.00001 2

Column vectors can also be obtained using the single colon : as a subscript. y=x(:) puts all the elements
of the x vector (x can be a row vector or a column vector) in y and makes it a column vector:

>> x=[1:2:5] >> y=x(:);y >> y(:)

w 1

X y = y =
135 1 1

3 3

5 5

Column vectors can also be constructed by listing their elements, separated by a semicolon, between brackets:

>> y=[1;3;5]

g wer<

Addressing vector elements. If a is a vector, its ith element is a scalar and is obtained by a(i). 1 is
referred to as a subscript and it cannot be negative or zero. It is surrounded by parenthesis and not brackets.
Examples:

>> a=[13:17] >> a(3)

a = ans =

13 14 15 16 17 15

>> a(1l) >> a(6)

ans = 777 Index exceeds matrix
13 dimensions.

>> a(0)

??? Index into matrix is negative or zero.
See release notes on changes to logical indices.

More than one element or blocks of elements can also be accessed using vectors of natural numbers (positive
integers) as subscript. Continuing with the example above, vi=a([1,3]) will form a vector v1 of dimension 2
with elements the first and third element of a : 13 15. a(2:4) will give elements two through four: 14 15 16.
a(2:2:5) will give elements 2 and 4: 14 16. a([[3:-1:2],5]) will give elements 3, 2, and 5: 15 14 17.

Array operations. When vectors are of the same dimension and type (row/column), the elementary operations
used for scalars +, -, *, /,~ apply to vectors on an element-by-element basis. The notation for addition and
subtraction is the same: + and -. For multiplication, division, and power it is .*, ./, and ."~ respectively.
Understand the following examples:

[2,3]1+[-2,11 = [2+(-2),3+1] = [0,4]
[2,3]1-[-2,11 = [2-(-2),3-11 = [4,2]
[2,3].%[-2,1] = [2%(-2),3%1] = [-4,3]
(2,81./0-2,11 = [2/(-2),3/1]1 = [-1,3]
(2,31.7[-2,11 = [2°(-2),371] = [0.25,3]

>> [2,3].%[-2,1]"
??? Error using ==> .x
Matrix dimensions must agree.

Operations between scalars and vectors are also defined. The different possibilities are shown in the examples
below between the scalar 4 and the vector [2,3]:

4+ [2,3] = [2,3] +4 = [4+2,4+3]= [6,7]

4 - [2,3] = [4-2,4-3] = [2,1]

[2,3] -4 = [2-4,3-4] = [-2,-1]

4 x [2,3] = [2,3]*4 = 4 .% [2,3] = [2,3].%4 = [4%2,4%3] = [8,12]
4./02,31 = [4/2,4/3] = [2,1.3333]

[2,3]1/4 = [2,3]./4 = [2/4,3/4] = [0.5,0.75]

4.7[2,3] = [4.72,4.73] = [16,64]

[2,3].74 = [2.74,3.74] = [16,81]

These operations are called “array operations”, i.e. array addition, array subtraction, array multiplication,
array division, and array power. They are exactly the scalar operations defined before but are applied here at
the same time to more than one scalar, or to an array of scalars. This is why the name array. They are to be
contrasted with “matrix operations” which are defined differently and are introduced below. We use “matrix
operations” and not “vector operations” because these operations will apply later to the general case of a matrix.

Matrix operations. You encountered the vector dot product when studying analytical geometry. The dot
product between two vectors w(uy,uz2,u3) and v(vi,vs,vs) is defined to be u - v = u1vy + usvs + uzvz. In

MATLAB, the matrix product between a row vector a and a column vector b of the same dimension is defined
to give the same result. If you have studied Linear Algebra, this is a special case of matrix multiplication.
Examples:

>> a=1:3

a =

123

>> b=[4:6]"

32

>> a*a

7?77 Error using ==> *

Inner matrix dimensions must agree.

More matrix operations will be introduced when we discuss two dimensional matrices.

Passing vectors to built-in functions. The built-in functions mentioned before can be used with vectors
the same way they are used with numbers. This time, the result will be a vector of the same nature of the
input vector. Its elements are obtained by applying the function to the elements of the input vector. This was
illustrated before with the log function. Another example:

>> x=0:0.5:pi
X =
0 0.5000 1.0000 1.5000 2.0000 2.5000 3.0000
>> y=sin(x)
y =
0 0.4794 0.8415 0.9975 0.9093 0.5985 0.1411
MATLAB has many built-in functions that manipulate vectors. We will introduce those when we discuss
matrices.

5 SIMPLE PLOTS

Plotting is very easy in MATLAB. The following MATLAB commands plot the function y = sin(z) for 0 < z <
10:

>> x = linspace(0,10,100);
>> y1 = sin(x);
>> plot(x,yl,’b?)

The first two lines create the vectors x and y1. The plot command on the third line produces the plot above.
The general form of the plot command is plot (x,y,S) where x and y are vectors of the same type and dimension
and S is a collection of characters that tell MATLAB what color, linestyle, and data point symbol to use. Use
help plot to find what are the characters corresponding to the different colors, symbols, and line styles in
MATLAB. For example, b refers to blue, o to circle, and : to dotted. The command plot(x,yl,’bo:’) (or
plot(x,yl,’0:b?)) plots a blue dotted line with a circle at each data point.

We next plot the function y = sin(z) exp(—=/4) on the same figure:

>> y2 = sin(x) .*exp(-.25%x);

>> hold on

>> plot(x,y2,’ro’)

>> title(’A sample MATLAB plot’)

>> xlabel(’x?)

>> legend (’y=sin(x)’,’y=sin(x) e\~ (-x/4)’)

10

-0.6

y=sin(x

-0.8[‘ o y:singxg enN(—x/4) ‘ il

0 1 2 3 4 5 6 7 8 9 10

The hold on command tells MATLAB to hold the current plot so that more elements can be added. The
legend command inserts the legend in the lower right hand corner (actually MATLAB puts it in the upper
right hand corner by default, but you can use the mouse to move it around). The x1label and title commands
are self explanatory. More plotting commands will be introduced later but you can always use the online help.
Try, for example, help ylabel, help axis, help grid, and help subplot.

Printing plots. Hardcopies of graphs on Unix workstations are best achieved by using the print command.
For example, print -deps fig at the command prompt creates a postscript file fig.eps which can be sent
directly to the printer using the local print command at the Unix level (usually 1p or 1pr). On MACs and PCs
it is easiest to use the menus on the figure windows or at the top of the screen to send plots directly to the
printer. The print command may still be used at the command line to produce postscript files.

6 SAVING YOUR COMMANDS - SCRIPTS

Everything we have done so far has been in MATLAB’s interactive mode. However, MATLAB can execute
commands stored in a regular text file. These files are called scripts or ‘M-files’. Instead of writing the
commands at the prompt, we write them in a script file and then simply type the name of the file at the prompt
to execute the commands. It is almost always a good idea to work from scripts and modify them as you go
instead of repeatedly typing everything at the command prompt.

Any text editor can be used to generate M-files. An M-file must be a plain ASCII file with the ‘.m’ extension.
The name of the file should not conflict with any existing MATLAB commands or variables. Furthermore, the
M-file has to be in a directory that MATLAB knows about, this can either be the current directory (try help

10

cd) or it can be in any directory on the MATLAB path (try help path). On PCs and MACs you can view
the path from the menus at the top of the screen. The % symbol tells MATLAB that the rest of the line is a
comment. It is a good idea to use comments so you can remember what you did when you have to recycle an
M-file (as will often happen).

A very simple script file:

% very very simple
x = sin(pi/2.)

If you call this script very.m and save it in your current directory, it is executed at the prompt by typing very
(no need for ‘.m’). The output is:

>> very
X:
1

It is important to note that the script is executed in the same memory workspace as everything we do at the
prompt. We are simply bringing the commands from the script file instead of typing them by hand at the
prompt. The variables already existing before executing the script can be used by that script. Similarly, the
variables in the script are available at the prompt after executing the script. Warning: in the example above,
if you change the value of pi before calling very, x will not be 1:

>> clear

>> very

x =

1

>> pi=0;very
x =

0
Here is a program that plots a circle and is worth saving in a script file:

% specify the radius

radius = 3;

% number of points to plot
num_pts = 100;

theta = linspace(0,2xpi,numpts);
% compute the coordinates

x = radius * cos(theta);

y = radius * sin(theta);
plot(x,y,’.”)

title(’A circle’)

% enlarge the axes a bit
axis([-1.1,1.1,-1.1,1.1]*radius)
% make the axes square

axis square

7 MATRICES

This section is a generalization of section 4 where we introduced MATLAB vectors. Since row and column
vectors are special cases of two dimensional matrices, the discussion in section 4 follows from the discussion in
this section.

Simple construction. A matrix is a rectangular array of numbers. For example,

5 4 0

A=13 2 sin(x/2)

11

is a matrix with two rows and three columns (2 x 3 matrix). We look at this matrix, and any other matrix, as
a set of row vectors placed underneath each other or a set of column vectors placed side by side next to each
other. A matrix can be constructed in MATLAB according to these two interpretations: we can place its rows
between brackets and separate them by semicolons or place its columns between brackets and separate them by
spaces or commas. We illustrate this by constructing the matrix above. Using the row picture:

>> A=[5 4 0; 3 2 sin(pi/2)]

w o =
N Dl

0
1

We can also define the rows separately and then put them inside the brackets:

>> r1=[5 4 0];r2=[3 2 sin(pi/2)];A=[r1 ; r2]

w o =
N D

0
1

The rows r1 and r2 must have the same dimension. Similarly we can construct A from its columns:

>> c1=[5 3]’;c2=[4 2]’ ;c3=[0 sin(pi/2)]’;A=[cl c2 c3]

w o=
N Bl

0
1

We can also form a matrix by appending rows, columns, or matrices to an existing matrix. The dimensions
should be consistent however. Study the following examples (A, ril, ... are from above):

>> B=[A ;r2] >> B=[A c2]

B = B =

540 5404

321 3212

321

>> B=[A ; A] >> B=[A A]
B =
540540
321321

Extracting matrix elements. The element in the ith row and jth column of a matrix A is A(i,j). The
subscripts i and j cannot be negative or zero. Arrays of matrix elements are identified using vector subscripts
whose elements are positive numbers. This is illustrated for the following matrix:

>B=[1025; 486 11; 7 3 9 20]

B =
1025
486 11
739 20

B(2,3) is the element in row 2 and column 3 which is 6:

>> B(2,3)
ans =

6

Consider B([2 31,[1 4]1). The vector on the left of the comma ([2 31) refers to rows while the one on
the right ([1 4]) refer to columns. B([2 3], [1 4]) is a sub-matrix of B whose elements are the intersection of
rows 2 and 3 and columns 1 and 4. Similarly, B([1 2],3) is sub-matrix of B whose elements are the intersection

12

of rows 1 and 2 and column 3, which is the column vector of elements 2 and 6. These two examples are shown
below:

>> B([2 3],[1 41) >> B([1 21,3)
ans = ans =

4 11 2

7 20 6

The numbers forming the vector subscript can be in any order and this allows us to manipulate B in any
way. Compared to B([2 3],[1 4]) above, B([3 2],[4 1]) is

>> B([3 2],[4 11)
ans =
20 7
11 4

C=B(3:-1:1,1:4) creates a matrix C by taking the rows of B in reverse order:

>> C=B(3:-1:1,1:4)

0
1

= NO
S 0w
N O ©
o N

The matrix B defined in this subsection will be used many times below. In order not to keep redefining it,
we create an M-file called Bmat .m containing the command that creates B. Thus, each time we type Bmat at the
prompt, we invoke the command:

B=[1025 ; 486 11; 7 3 9 20];

Single colon notation. When a vector subscript is to refer to all the rows or columns in ascending order
(like 1:4 in the expression for C above), we can use a single colon instead. C=B(3:-1:1,:) will give the same
result as C=B(3:-1:1,1:4). Also, B(2, :) refers to the second row and B(:,3) refers to the third column:

>> B(2,:) >> B(:,3)
ans = ans =
4 86 11 2

6

9

When used by itself as a matrix subscript, the single colon creates a column vector by taking the columns of
the matrix one at a time. C=B(:) will create a column vector C consisting of the first, second, third, and fourth
column of B:

>> C=B(:); C’
ans =
1470832695 1120

Changing matrix elements. Once a matrix is formed, any of its submatrices (a single element, vector, or
two dimensional matrix) is accessed using the appropriate subscripts. It can be changed by simply assigning
it a matrix of the same dimensions. With B the same matrix as before, B(2,3)=4 changes the element in the
second row and third column to 4 while B(1,:) = [1:4] makes the first row equal to [1 2 3 4]:

>> Bmat; B(2,3)=4 >> Bmat; B(1,:) = [1:4]
B = B =

1025 1234

4 8 4 11 4 86 11

73920 73920

B(:,[3,1,4])= [1:3; 1:3;1:3] resultsin :

13

>> B(:,[3,1,4])= [1:3; 1:3;1:3]

N NN
w oo N Il
)
w w w

Deleting a row or column. Vectors in a matrix are deleted by assigning [1 to them. B(1,:)=[] deletes the
first row of B while B(:,2:4) =[] deletes the second through the fourth column:

>> Bmat; B(1,:)=[] >> Bmat;B(:,2:4) =[]
B = B =
4 86 11 1
739 20 4
7

Given the vector v=[8 9 5 6 3], v([2 3 4])=[] deletes the second through the fourth elements and results
in a vector of dimension 2:

>> v=[8 9 5 6 3] >> v([2 3 41)=[]
v = v =
89563 8 3

Transpose and conjugate transpose. The operator .’, when placed after a matrix, produces its transpose,
that is, a matrix whose columns are the rows of the original matrix, placed in the same order. Equivalently, the
rows of the transpose of a matrix B are the columns of B:

>> Bmat; B >> B.?
B = ans =
1025 147
486 11 083
739 20 269
5 11 20

The operator ’ by itself produces the conjugate transpose. This means that it transposes the matrix and
replaces its elements by their complex conjugate. If the elements of the matrix are real, then ’> and .’ are
equivalent.

MATLAB matrix utilities. The mathematical functions mentioned in sections 2 and 4 (sin, cos, ...) apply
to matrices the same way they apply to vectors. For example, sin(A) is a matrix of the same size of A. If a;; is
the element on row ¢ and column j of A, the element on row ¢ and column j of sin(A) will be sin(a;;).

In addition to these functions, MATLAB has other useful built-in functions to manipulate matrices. We list
some of them:

e eye(m,n) is an m X n matrix with ones on the main diagonal and zeros elsewhere (the main diagonal
consists of the elements with equal row and column numbers). If m = n, eye(n) can be used instead of
eye(n,n).

e zeros(m,n) is an m Xn matrix with zero elements. If m = n, zeros(n) can be used instead of zeros(n,n).

e ones(m,n) is an m X n matrix whose elements are ones. If m = n, ones(n) can be used instead of
ones(n,n).

e diag(v) is a square diagonal matrix with vector v on the main diagonal.
e diag(A) is a column vector formed from the main diagonal of A.

e diag(A,n) is a column vector formed from the nth diagonal of A. n = 0 corresponds to the main diagonal,
n = 1 to the first upper diagonal, n = —1 to the first lower diagonal, etc (see examples below).

e tril(A) is the lower triangular part of A.

14

e triu(A) is the upper triangular part of A.

e max: for vectors, max (v) is the largest element in v. For two dimensional matrices, max(A) is a row vector
containing the maximum element from each column.

e size(A) is a two-element row vector containing the number of row and columns of A. This function can
be used with eye, zeros, and ones to create a matrix of the same size of A: ones(size(A)) creates a
matrix of ones having the same size of A.

e length(A)is a number equal to the greater of the number of rows and the number of columns, that is,
max (size(A)).

e sum: for vectors, sum(v) is the sum of the elements of v. For two dimensional matrices, sum(A,1), or
simply sum(A), is a row vector representing the sum of the elements over each column. sum(4,2) is a
column vector representing the sum of the elements over each row.

The use of these functions is illustrated below. Use help elmat for more MATLAB functions.

>> eye(2,3) >> zeros(2,3) >> ones(2,3)
ans = ans = ans =
100 000 111
010 000 111
>> diag([1:4]) >> Bmat; B >>Bmat; diag(B)
ans = B = ans =
1000 1025 1
0200 486 11 8
0030 739 20 9
0004
>> diag(B,-1) >> max(B) >> s=size(B)
ans = ans = s =
4 78 9 20 34
3
>> length(B) >> length([4 5 3 2]’) >> sum([4 5 3 2 1]7)
ans = ans = ans =
4 4 14
>> sum(B,1) >> sum(B,2)
ans = ans =
12 11 17 36 8
29
39

Array operations. The array operations (+,—,.*,./,.") introduced earlier between two vectors are defined
similarly between two matrices. Again, the matrices in question should be of the same dimension, the operators
act element by element, and the resulting matrix is of the same dimension of the matrices operated on. The
array operations between a matrix and a scalar are also similar to those between a vector and a scalar. Check
the previous examples in section 4.

Matrix operations. Solving a system of linear equations can be easily done in MATLAB using matrices.
This involves using the matrix multiplication operator (*), the right division operator (/), and the left division
operator (\). We will cover this later when needed in the class. Please refer to the MATLAB references given
in handout 1 if you like to learn this subject now.

We discuss next the applications of matrices in plotting.

15

8 MORE PLOTTING

The function meshgrid and surface plots. Assume we want to plot the function

sin \/x2 + y?

over the domain —8 <z < —2 and 1 <y < 3. We first create a rectangular grid in the domain, say 4 points in
the z-direction (-8, -6, -4, -2) and 3 points in the y-direction (1, 2, 3). The correspondence between the grid and
a matrix is obvious. At each point on the grid we need to calculate the coordinates z and y and the function z.
This is best done by creating a matrix X, containing the z-coordinates of all the points, a matrix Y containing
the y-coordinates, and a matrix Z containing the function values. X and Y can be created in MATLAB using
the function meshgrid with arguments the vectors representing the points in the z and y directions:

2 =

>> vx=[-8:2:-2];
>> vy=[1:3];
>> [X,Y]= meshgrid(vx,vy);

The result is:

>> X >> Y
X = Y =
-8 -6 -4 -2 1111
-8 -6 -4 -2 2222
-8 -6 -4 -2 3333

The columns of X and Y represent the points of the grid with constant x-values while the rows represent the
points with constant y-values.
We next calculate the matrix Z and plot it using the command mesh. The remainders of the commands are:

>> R=sqrt(X.”2 + Y."2);
>> Z=sin(R) ./R;
>> mesh(X,Y,Z)
>> xlabel(’x’)
>> ylabel(’y’)
>> zlabel(’z?)

\2

We illustrate this by plotting the same function on a larger domain with more points. The commands and
the plots are:

>> [X,Y] = meshgrid(-8:.51:8, -8:.51:8);
>> R=sqrt(X.”2 + Y."2); Z=sin(R)./R;

>> mesh(X,Y,Z)

>> xlabel(’x’); ylabel(’y’); zlabel(’z’)

Note that a step size of 0.51 was used instead of 0.5 to avoid dividing by zero. Try it!
Three dimensional line plots. These are done in MATLAB using the command plot3. The following is an
example of plotting a circular helix:

>> t=0:.1:20;

>> x=sin(t) ;y=cos(t) ;z=t;
>> plot3(x,y,2);

>> xlabel(’x’)

>> ylabel(’y?)

>> zlabel(’z’)

Direction fields. Direction fields in MATLAB are plotted using the quiver command along with meshgrid.
The following script plots the direction field given in Kreyszig, page 11, Fig. 5:

16

ﬂ \\
Al

02 = “‘ '('I =

0 ‘”5%;§“\‘““““A“b ‘ ‘ ‘gyéf‘
R ““IIII ‘ \\\\ &
% N ,‘3 74

0

10

20

% plot the field

[X,Y] = meshgrid(-3:.5:3,-3:.5:3.);
py=X.*Y;

px=ones (size(py));
length=sqrt(px."2+py."2);
px=px./length;py=py./length;

quiver (X,Y,px,py)

The command quiver(X,Y,px,py) plots arrows on the grid defined by X and Y. The z-component of the
arrow vectors at each point on the grid is given by the matrix px while the y-component is given by py. Of
course, X, Y, px, py are of the same size. The example in Kreyszig has y' = xy, which is the slope of the tangent
vectors (arrows). We thus set the element of py to be y' = zy and the elements of px to be one (see script
above).

In general, the vectors defined by px and py do not have the same magnitude and quiver plots the arrows
accordingly. In the script above, we divided each vector by its length so all the vectors have a magnitude of
one. We want the arrows in the direction field to be of equal length.

Before displaying the results, we add to the plot a particular solution given by y = 2e(
and the plots are:

2°=1)/2 The commands

17

% plot a particular solution
hold on

x==-2:.1:2;
plot(x,2xexp((x.72-1)/2),’r?)
axis image

axis([-3 3 -3 3])

xlabel(’x’); ylabel(’y’)

title(’ vector field for y’’=xy’)

vector field for y'=xy

=]
Y4
&

N
NN

Yos
j/
/
f/Z(ig/Q//%// \\x\\g\g:\s

&

\1%%
iy

/)\

—
e,

-2

:/zkfé/zf/%// \x\\g\ngg\t

NN
OO\

)

\s;\§\§\§>§§§Z/Z/Z/z/z%?%/

IR
)
e
N
w

-3

x

9 TEXT

We have been using text to produce labels and titles for plots. We will now formally discuss MATLAB texts,
which are called character strings or simply strings. A string is assigned to a variable by enclosing it between
single quotes. c="How are you doing?’ will make c a string variable with value >How are you doing?’:

>> c=’How are you doing?’
Cc =
How are you doing?

Because the single quote is used to signal the end of the string, we must type it twice in case we want it to
be included within some string. In the two examples below, the first one is not valid but the second one is:

>> c=’What’s up?’ >> c=’What’’s up?’
??7? c=’What’s c =
| What’s up?

Missing operator, comma, or semi-colon.

Strings as arrays. FEach string is an array by itself. c="What’’s wup?’ is a row vector of length 11. Note
that there are two spaces between s and u. Each of them, as well as ’’, counts as one character. Vector
manipulation can be done on the string c like any other row vector:

>> c=’What’’s up?’;c(1) >> c(3:8) >> c(4:-1:1)
ans = ans = ans =
W at’s u tahW

If we have the following two row vectors of numbers, r1=[1 2] and r2=[3 4], [r1 r2] will create the row
vector [1 2 3 4]. Similarly, if we enclose strings between brackets and separate them by spaces or commas, we

18

obtain another string which is the concatenation of the original ones. ¢=[’I ’,’am ’,’fine.’] will produce
a string ¢ whose value is ’I am fine.’.

As with matrices, strings can have multiple rows. classi=[’Rony’; ’Mary’; ’Mona’; ’John’] creates
a string matrix with one name per row. We can assess one name the usual way we assess one row of a
matrix: class1(3,:) will give Mona. Being a matrix, all the rows of a string must have the same number of
columns. class2=[’Nick’; ’Julie’; ’Min’; ’John’] will result in an error since not all the names have the
same length. We can fix this problem by appending blanks to the shorter names: class2=[’Nick ’; ’Julie’;
’Min ’; ’John ’]. Another way to fix this problem is to use the MATLAB function char which is introduced
below.

Manipulating strings. MATLAB has many built-in functions to manipulate strings. We introduce some of
them below: (some of the descriptions are obtained using the help command)

e s = char(sl,s2,s3,...) forms the string s containing the strings s1,s2,s3,... as rows. It automatically
pads each string with blanks in order to form a valid matrix.

s=lower (string var) forms the string s by converting string var to lowercase.

e s=upper (string var) forms the string s by converting string var to uppercase.

e s = int2str(x) rounds the number x to an integer and converts the result into a string s.

¢ s = num2str(x) converts the number x into a string representation s with about 4 digits and an exponent
if required. This is useful for labeling plots with the title, xlabel, ylabel, and text commands.

Examples:

>> char(’1’,’two’,’three’) >> lower(’Seven UP’) >> upper (’I am down’)
ans = ans = ans =

1 seven up I AM DOWN

two

three

>> int2str(4.51) >> int2str(-4.49) >> num2str(3.30)

ans = ans = ans =

5 -4 3.3

Special characters. As we have seen before, some characters have special role when displaying a string into
a plot using title, gtext, legend, etc. The caret = makes the character that follows it a superscript while the
underscore _ makes the character that follows it a subscript. A whole set of characters can be made superscript
or subscript by enclosing them between curly braces and preceding them by =~ or _. In order to display the
characters ~ { } _ on a plot, they need to be preceded by a back slash \. For example, the title e("%/4) can be
obtained using title(’e~{(-x/4)}’) while the title e”{-x/4} can be obtained using title(’e\~\{-x/4\}’).

Controlling the display. Assume we wrote a long script that computed the average value of the temperature
(T) during the month (m) of the year 2000 in California. Assume also that the computation yielded T=120.1 for
m=’January’. Writing T on a single line in the script will display both the name and the value of T when the
line is executed:

T
120.1000

Similarly for m. A better way is to use the function disp. If x is a number, disp(x) displays its value without
printing its name. If x is a string, the corresponding text is displayed. We can use the function disp along with
num2str to produce a good display of the results. Including the two lines

s=[’Tav during the month of ’,m,’ is ’,num2str(T),’F’];
disp(s)

19

in our script will give the following output:

Tav during the month of January is 120.1F

Interacting with scripts. We can also write MATLAB scripts that prompt the user for some input during
the execution of the commands. This is possible using the function input. For example, sal=input (’What is
your yearly salary?) displays What is your yearly salary? at the prompt and waits for input from
the keyboard. The input is assigned to the variable sal and in general, can be a number, a string, or a matrix.
Examples of valid inputs are: 24000 for a number, T am jobless’ for a string, and [2000, 12] for a row
vector.

The function eval. eval(s), where s is a string, causes MATLAB to execute the string as an expression
or statement. For example, typing eval(’sin(pi/2)’) at the prompt is exactly like typing sin(pi/2). The
result will be 1. Using eval, we can input to a script a command as a string and then execute it. Consider the
following script:

s=input (’What is your yearly salary? ’);

formula=input(’What is the corresponding formula? ’);

yearly sal=eval(formula) ;

tax=.3*yearly sal;

disp([’your tax is $’,num2str(tax)]);

If we input [12 1500] to the first question and ’s (1) *s(2)’ to the second question, yearly_sal will be 18000
and the output will be

your tax is $5400

So far, we have been using simple MATLAB commands to perform simple tasks like constructing vectors and
matrices for plotting purposes. As the problems to be solved by MATLAB get more complex, it is necessary
to learn some elementary programming techniques that involve ways to perform repetitive calculations and
decision-making. These control structures allow one to create a custom program designed to solve a specific
problem.

10 THE FOR LOOP

Perhaps the most common and useful computational structure in programming is the loop structure, wherein
a block of statements is executed repeatedly with some of its parameters changed. MATLAB has two types of
explicit loops: the for loop, where the repetition is carried over for a predetermined number of times, and the
while loop, where the repetition stops only when a certain condition is met. The while loop will be discussed in
a later section.
The for loop is constructed in the following manner:
for loop control variable = array
Set of MATLAB statements that will be executed for
a number of times equal to the number of columns of
array. At iteration number n, the loop control variable
is assigned the column n of array.
end
For most purposes, array is a row vector of the form [initial value : increment : final value]. Of course,
increment can be omitted when it is 1.
The following script is an example of summing the components of a vector:

rv=[1.1, 2, -1.2, 3];

sum_rv=0;

for i=1:length(rv)
sum_rv=sum_rv+rv (i) ;

end

sum_rv

20

The for loop structure in the script above is exactly equivalent to the following set of commands:

i=1;sum_rv=sum_rv+rv(i);
i=2;sum_rv=sum_rv+rv(i);
i=3;sum_rv=sum rv+rv(i);
i=4;sum_rv=sum rv+rv(i);

The same task can also be performed using the following for loop, where the loop control variable is equal
to one of the vector components at each iteration:

rv=[1.1, 2, -1.2, 3];

sum_rv=0;

for x=rv
SUm_rv=sum_rv+x;

end

sum_rv

The answer in both cases should be the same as the one obtained using the sum command introduced earlier:
sum(rv). Warning: the value of the loop control variable (i in the first script and x in the second one) cannot
be changed by the commands inside the loop; it can only be used.

Implied loops. Many MATLAB commands operate with an implied loop. An example is the function sum,
which represents the for loop script above. Most of the functions and commands we have used to construct and
manipulate vectors and matrices contain implied loops as well. For instance, the command x=[0:.5:5] can be
performed with

for i=1:11
x(1)=(i-1)/2;
end

Nested loops. for loops can be nested as desired. Consider the following script that constructs a matrix:

for n=1:3
for m=1:4
A(m,n)=n"2+m"2;
end
disp([’column ’,int2str(n),’ is filled’])
end

The result of running the script is

column 1 is filled
column 2 is filled
column 3 is filled
2 5 10
5 8 13
10 13 18
17 20 25

For each value of n, the inner loop is executed for all values of m.

Taylor series example. The Taylor series of sin z is given by

x> 25 2
Slnl’:m—y—}-g—ﬁ—}—
The following script plots sin z and its first 6 approximations:

clf; x=[0:0.1:5]; y=sin(x); plot(x,y);
axis([0 5 -2 5]); grid on; hold on;

21

y=x; deno=1; plot(x,y); pause;
for i=2:6
n=2%i-1; deno=-deno*(n-1)*n;
y=y + x."n/deno;
plot(x,y); pause;
end

The c1f command clears the current figure if there is already one. The pause command causes the script to stop
and wait for the user to strike any key before continuing. Without pause, the script above will be executed very
fast and will yield the figure containing the 7 curves without giving us a chance to see which curve corresponds
to each iteration. A variation of the pause command is pause(n) which pauses the script for n seconds before
continuing. No need for a keyboard strike to continue.

We add to the script above the necessary commands to label the different curves. For this, we construct a
string matrix containing the labels using the char function. We also use the function eval to write a series of
commands in a compact form. The extended script is given below. The three dots at the end of the first line
are used to tell MATLAB that the second line is a continuation of the first one.

labels=char(’1 term’, ’2 terms’, ’3 terms’,

’4 terms’,’5 terms’, ’6 terms’, ’sin(x)’);
plp="plot(x,y); gtext(labels(i,:)); pause’;
% plp stands for plot, label, and pause

clf; x=[0:0.1:5]; y=sin(x); i=7; eval(plp);
axis([0 5 -2 5]); grid on; hold on;

y=x; deno=1; i=1; eval(plp)
for i=2:6
n=2%i-1; deno=-deno*(n-1)x*n;
y=y + x."n/deno;
eval (plp)
end
title(’Taylor series approximations for sin(x)’)
xlabel(’x’); ylabel(’sin(x) and its approximations’)

Taylor series approximations for sin(x)

5 T T T T T

4 i

3r i
@ 1 term 3 terms
S
T
£
5 2r 1
s
(=N
@
2
g 1r §
a
=
£
0]

0 5 terms

sin(x)
_l | -
6 terms
2 terms
4 terms
-2 1 1 1 1 1 1 1 1 1
0 0.5 1 15 2 2.5 3 35 4 4.5 5

22

11 USER-DEFINED FUNCTIONS

We have experienced the power of MATLAB through its wide range of useful functions. By functions we refer
to all kind of MATLAB commands and not only the elementary mathematical ones. The functions that we have
used so far can be classified according to three categories:

e commands that take one or more input arguments, compute the required results (one or more) using the
input, and pass these results back to us: y=log(x), s=char(s1,s2,s3), [X,Y]=meshgrid(x,y), ...

e commands that perform some required task using one or several input arguments but do not pass any
result back: xlabel(’x’), plot(x,y), ...

e simple commands that perform some required task and do not require any input arguments nor pass any
result back: format, clear, grid on, clf, pause, ...

We will learn in this section how to extend MATLAB’s library by creating our own functions.

Constructing functions. A user-defined function consists of two parts: a function definition line and a body
of commands that perform tasks and compute results. The whole content is written in a separate text file with
a .m extension (like scripts). This file is called a function file.

The function definition line has the name of the function and a list of the input and output arguments, if
there are any. Its syntax is :

function [out_varl, out_var2, ...]1 = function_name (in_varl, in_var2, ...)

The input and output arguments are the usual variables (scalars, vectors, or arrays of numbers or strings). The
function name should be the same as the name of the function file (without the .m extension) and it must follow
the same naming rule as for a MATLAB variable. We list below some examples of definition lines and their
corresponding function files. Pay attention to the special cases of one output variable, no output variables, and
no input variables.

function definition line function file
function [perimeter,areal=rectangle(b,h) | rectangle.m
function [areal=rectangle(b,h) rectangle.m
function area=rectangle(b,h) rectangle.m
function [J=plot_circle(r) plot_circle.m
function plot_circle(r) plot_circle.m
function []=just_say hi() just_say hi.m
function just_say_hi just_say_hi.m

Note that if there is one output variable [] can be omitted, if there are no output variables []= can be omitted,
and if there are no input variables () can be omited. We provide below 4 examples that illustrates different
situations.

Example 1 - one output variable.

function dydt=f(t,y)
dydt= y./t;

The function file is called f.m. The function f (t,y) is accessible for subsequent calculations in MATLAB like
any other command. Its output is the element by element division of its second input argument by its first
input argument (therefore the order of the input and output arguments is important). Examples:

>> u=2; v=3.6; >> £(2,4) >> £(4,2)
>> w= f(u,v) ans ans
w= 1.8 2 0.5

The variables t, y, dydt have dummy names and are local to the function. It is not necessary when calling the
function f that the inputs are named t and y and the output is named dydt.

23

The arguments t and y (and thus the output dydt) can be vectors or matrices since the body of the function
is array operations compatible:

>> t = [1:.1:4]; y=exp(t);
>> plot (y, £ (t,y))

Example 2 - two output variables. Assume the function meshgrid that we used to plot direction fields is
not available. The following function gives the same results:

function [X,Y]=my meshgrid(x,y)
for i=1:length(y)
X(i,:)=x;
end
for i=1:length(x)
Y(:,i)=y.7;
end

Compare the example below to the first example in Section 8.
>> vx=[-8:2:-2]; vy=[1:3]; [X,Y]= my meshgrid(vx,vy);

the result is

>> X >>Y
X = Y =
-8 -6 -4 -2 1111
-8 -6 -4 -2 2222
-8 -6 -4 -2 3333

Example 3 - no output variables.

function plot_circle(r)

% number of points to plot
num_pts = 100;

theta = linspace(0,2%pi,numpts);
% compute the coordinates

X = r * cos(theta);

y = r * sin(theta);
plot(x,y,’.?)

% enlarge the axes a bit
axis([-1.1,1.1,-1.1,1.1]*radius)
% make the axes square

axis square

Try executing the following command line:

>> for x=1:5; plot_circle(x), hold on, end

Example 4 - no input or output variables.

function hi
disp(’Just want to say HI. Bye.’)

Executing hi, we get

>> hi
Just want to say HI. Bye.

24

Comparing function files and script files. As with script files, function files are not entered in the command
window but rather are external text files created with a text editor. Both files have to be in a directory that
MATLAB knows about; this can either be the current directory or any directory on the MATLAB path. Without
the definition line, the function file becomes a script file.

A function file is different than a script file in that it communicates with MATLAB workspace only through
the output variables it creates. Intermediate variables within the function (like those in my_meshgrid and
plot_circle) do not appear or interact with the MATLAB workspace. They are not defined after the function
is executed.

Using a user-defined function instead of a script file of commands has two advantages. First, we do not
have to worry about any interaction between variables that exist in the workspace prior to calling the function
and the variables created and used within the function. For example, changing the value of pi before calling
plot_circle does not affect the value of pi used in the third line of plot_circle. Similarly, using the variable
x in plot_circle and as a counter in the for loop in Example 3 doesnt create any problems. Remember that
the value of the loop counter shouldnt be changed inside the loop. Second, the function allows using a list of
input and output variables. We can thus easily repeat a lengthy set of commands with different parameters.

12 DECISION MAKING

Assume we want to plot the function

1 ifo<z<1
f(2) = { -1 otherwise

for x=[-1:.1:2]. We need first to construct the corresponding vector £ and then we can use the command
plot(x,f). This can be achieved if we can write commands that are equivalent to:

for i=1:length(x)
if x(1) > 0 and x(1) <1 let £(i)=1, otherwise, let £(i)=-1
end

MATLARB allows this by providing a set of operators to compare numbers and a decision-making structure to

decide whether or not to execute some commands. We discuss these below.

Relational Operators. Comparison between numbers is done through 6 operators called the relational
operators. They are:

Relational Operator | Meaning
< less than
<= less than or equal to
> greater than
>= greater than or equal to
== equal to
~= not equal to

The comparison is done by placing a relational operator between the numbers: 3<2, x“=y, etc. Expressions
of this from are called logical or relational expressions. The result of a comparison (or the value of a logical
expression) is either true or false. MATLAB assigns a numerical value of +1 for true and 0 for false. The value
of a logical expression can therefore be used in mathematical operations. Examples:

>> 3<2 >> 4>=4 >> x=3; y=(x==4) - 4; y

ans = ans = y =

0 1 -4

Note that = and == mean different things: == compares two variables and returns ones where they are equal

and zeros where they are not; = on the other hand is used to assign the output of an operation to a variable.

25

Also, the arithmetic operators take precedence over the relational operators: compared to (x==4) - 4, which
is equal to 0-4=-4 in the example above, x==4 - 4 is equal to x==0 which is 0.

As for the arithmetic operators, the relational operators can also be applied between arrays of equal size, or
between an array and a scalar, on an element by element basis. Consider the following examples:

>> x = [6 3 9]; >> x=-3:1:3

>> y = [10 -2 9]; x =

>>z=x<y -3-2-10123
z= >> x>=0

100 ans =

0 0 01111

In the first example, each element of the row vector x is compared to the corresponding element of the row
vector y; in the second one, each element of x is compared to 0.
We illustrate a good use of logical expressions in the following example:

>> x=[-4:11/5

X =

-0.8000 -0.6000 -0.4000 -0.2000 0 0.2000
>> sin(x)./x

Warning: Divide by zero.

ans =

0.8967 0.9411 0.9735 0.9933 NaN 0.9933

Computing the function sin(z)/z at = 0 gives an error since division by 0 is undefined in MATLAB although
sin(0)/0 is 1. Replacing the 0 in x by a very small number (the constant eps for example, which is 2.2204e-16)
gives the correct limiting answer:

>> x=x+(x==0) *eps;

>> sin(x)./x

ans =

0.8967 0.9411 0.9735 0.9933 1.0000 0.9933

x==0 is a vector of the same length of x and is 1 whenever x is zero, and 0 otherwise. Adding (x==0)*eps to x
replaces the zeros in x (only one zero in this case) by eps.

Logical Operators. Consider the example stated at the beginning of this Section. In order to set f£(i) to
1, the logical expressions x(i)>=0 and x(i)<=1 need to be true. In other words, ‘both of them’ need to be
true. This motivates combining two logical expressions to give another one. This is done in MATLAB through
3 operators called the logical operators. They are:

Logical Operator | Meaning
& and
| or
- not

Logical expressions are combined using the logical operators according to the following rules:

true & true = true
true & false = false
false & false = false
true | true = true
true | false = true
false | false = false

“true = false

“false = true

26

The following examples illustrate the use of logical operators with scalars and vectors:

>> a = 2; >> x = [6 3 9];

>> b = 8; >> y = [10 -2 9];

> c=a>b &b < 20; > z=(x+y>10) & (x .xy > 0);
>> c = >> z =

0 101

Using the relational and logical operators, we can now construct £ of the example at the beginning of this
Section as follows: (without the use of the if structure which is discussed next)

>> x=[-1:.1:2];
>> f=(x>=0) & (x<=1);
>> f=-1 + 2xf;

The second line gives a vector of the same length of x which is 1 for 0 < x <1 and 0 otherwise. The third line
gives the desired f, which is 1 for 0 < x <1 and -1 otherwise. Try it!

if-else-end structures. (parts of this subsection are taken from the User’s Guide of the ‘Student Edition
of MATLAB’) Many times, sequences of commands must be conditionally evaluated based on a relational test.
In programming languages this logic is provided by some variation of an if-else-end structure. The simplest
if-else-end structure is

if expression
commands executed if expression is true
end

If the logical expression is false, the block of statements is ignored and the program proceeds to the next
statement after the end. Consider for example the script apple.m below:

n=input (’How many apples are you buying? ’);
cost=n*.5; discount=’0%’;
if n>=10

cost=0.8%cost;

discount=’20%’;
end
disp([’The cost is $’,num2str(cost)]);
disp([’It reflects ’,discount,’ discount’])

We run it twice:

>> apple >> apple

How many apples are you buying? 13 How many apples are you buying? 3
The cost is $5.2 The cost is $1.5

It reflects 207 discount It reflects 0% discount

In cases where there are two alternatives the if-else-end structure is

if expressionl

commands executed if expressionl is true
else

commands executed if expressionl is false
end

As an example, we use the if-else-end structure to construct the function f given earlier:

27

x=[-1:.1:2];
for i=1:length(x)
if (x(1)>=0) & (x(i)<=1)
£f(i)=1;
else
f(i)=-1;
end
end

When there are three or more alternatives, the if-else-end structure takes the form

if expressionl

commands executed if expressionl is true
elseif expression?

commands executed if expression2 is true
elseif expressiond

commands executed if expressiond is true
elseif ---

elseif expression_n

commands executed if expression_n is true
else

commands executed if no other expression is true
end

As an example, consider the following script which we call test.m:

a=2; b=8; c=5;

if a>=b
c = 10;
elseif b ==c + 3
c = 15;
elseif b > a
c = 20;
else
c = 25;
end

Running it yields

>>test; c
C=
15

Note in the above example that both of the elseif conditional statements are true. However, after the first
test that results in true, the next statement to be executed will be that following the end statement.

while loops. As opposed to a for loop that evaluates a group of commands a fixed number of times, a while
loop evaluates a group of commands an indefinite number of times until a condition is met.
The general form of a while loop is

while expression
commands executed as long as expression remains true
end

The function my_row.m below is equivalent to constructing a row vector using the colon notation introduced in
Section 4.

28

function x=my_row(xa,inc,xb)
i=1; x(i)=xa;
while (x(i)+inc) <= xb
i=i+1;
x(1)=x(i-1)+inc;
end

We execute this function with examples from Section 4:

>> my row(1l.,.5,2.5) >> my row(l.,.5,2.4) >> my_row(1.,.5,2.9)
ans = ans = ans =
1.0000 1.5000 2.0000 2.5000 1.0000 1.5000 2.0000 1.0000 1.5000 2.0000 2.5000

I would greatly appreciate any comments on this handout (alberth@stanford).

29

