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Math 51H – Mean value theorem, Taylor’s theorem and integrals

If f is a C1 real valued function on an open set U ⊂ Rn, we have for any x, h, i, with ‖h‖ sufficiently
small, that

f(x+ hei)− f(x) = hf ′(x+ θhei)

for some θ ∈ (0, 1). To see this, let

F (t) = f(x+ thei), t ∈ [0, 1].

The chain rule shows that F is differentiable, with

F ′(t) = h(Dif)(x+ thei);

the composition of continuous functions being continuous, F is actually C1. Thus, the mean value
theorem gives

F (1)− F (0) = F ′(θ)

for some θ ∈ (0, 1). Substituting in F , F ′ yields

f(x+ hei)− f(x) = h(Dif)(x+ θhei). (1)

Here is a different way of doing the same. Let’s suppose h > 0; h < 0 is similar, and h = 0 is
automatically true for any θ. Then let G : [0, h]→ R be defined by

G(s) = f(x+ sei), s ∈ [0, h].

Then by the chain rule
G ′(s) = (Dif)(x+ sei).

On the other hand by the mean value theorem

G(h)−G(0) = hG ′(c), c ∈ (0, h).

Substituting in G
f(x+ hei)− f(x) = h(Dif)(x+ cei).

Letting θ = c/h, so θ ∈ (0, 1), we get

f(x+ hei)− f(x) = h(Dif)(x+ θhei)

again.

Let’s also write this out using the fundamental theorem of calculus: if φ is C1 on [a, b] then

φ(b)− φ(a) =

∫ b

a
φ ′(s) ds.

Note that a component-by-component check shows that the fundamental theorem of calculus is also
valid for Rm-valued f , so we allow such f from now on. Applying this for F , we get

f(x+ hei)− f(x) = F (1)− F (0) =

∫ 1

0
F ′(t) dt =

∫ 1

0
h(Dif)(x+ thei) dt,

i.e.

f(x+ hei)− f(x) = h

∫ 1

0
(Dif)(x+ thei) dt.

So what we have in comparison with (1) is that (Dif)(x+ θhei) is replaced by
∫ 1
0 (Dif)(x+ thei) dt.

Now let us work with hei replaced by a vector h ∈ Rn. For this purpose we should make sure that the
line segment between x and x+h is contained in the domain of definition of F , i.e. U ; a convenient way



of phrasing this is to make the stronger assumption Bρ(x) ⊂ U , and ‖h‖ < ρ. So let F (t) = f(x+ th),
t ∈ [0, 1]. By the fundamental theorem of calculus,

F (1)− F (0) =

∫ 1

0
F ′(t) dt,

and by the chain rule

F ′(t) =
n∑
i=1

hi(Dif)(x+ th).

Substituting in,

f(x+ h)− f(x) =

∫ 1

0

n∑
i=1

hi(Dif)(x+ th) dt =

n∑
i=1

hi

∫ 1

0
(Dif)(x+ th) dt.

Notice that writing (Dif)(x+ th) = (Dif)(x) + ((Dif)(x+ th)− (Dif)(x)) gives

f(x+ h)− f(x) =
n∑
i=1

hi(Dif)(x) +
n∑
i=1

hi

∫ 1

0
((Dif)(x+ th)− (Dif)(x)) dt

which is a more precise remainder term than in the definition of differentiability (using continuity of
the derivative) since we have an explicit error term. Indeed we have that give ε > 0 there is δ > 0
such that ‖h‖ < δ implies ‖(Dif)(x + th) − (Dif)(x)‖ < ε for all i (indeed, for each ε > 0 a δi > 0
exists for this statement for Dif , let δ > 0 be the minimum of these finitely many positive numbers),
so for ‖h‖ < δ, ∥∥∥ n∑

i=1

hi

∫ 1

0
((Dif)(x+ th)− (Dif)(x)) dt

∥∥∥ ≤ n∑
j=1

|hi|ε ≤ nε‖h‖.

Let’s go now one order further in this expansion. Namely, we write

F (1)− F (0) =

∫ 1

0
F ′(t) dt =

∫ 1

0
1 · F ′(t) dt = (t− 1)F ′(t)|10 −

∫ 1

0
(t− 1)F ′′(t) dt,

where we integrated by parts, using t− 1 as an antiderivative of 1; we are making this choice so that
the t = 1 boundary term cancels. Thus,

F (1) = F (0) + F ′(0) +

∫ 1

0
(1− t)F ′′(t) dt. (2)

Now, as above F ′(t) =
∑n

i=1 hi(Dif)(x+ th), so applying the chain rule again,

F ′′(t) =
n∑
i=1

hi

n∑
j=1

hj(DjDif)(x+ th) =
n∑
i=1

n∑
j=1

hihj(DjDif)(x+ th)

Substitution into (2) yields

f(x+ h) = f(x) +

n∑
i=1

hi(Dif)(x) +

n∑
i,j=1

hihj

∫ 1

0
(1− t)(DiDjf)(x+ th) dt. (3)

This is Taylor’s theorem with second order integral remainder. Rewriting as before, using
∫ 1
0 (1−t) dt =

−1
2(1− t)2|10 = 1

2 ,

f(x+ h) = f(x) +

n∑
i=1

hi(Dif)(x) +
1

2

n∑
i,j=1

hihj(DiDjf)(x)

+

n∑
i,j=1

hihj

∫ 1

0
(1− t)[(DiDjf)(x+ th)− (DiDjf)(x)] dt.



Again, using the continuity of the partials, denoting the last term by E(x, h), given ε > 0 there is
δ > 0 such that ‖h‖ < δ implies ‖DiDjf(x+ h)−DiDjf(x)‖ < ε (for each i, j, there is a δij > 0 with
this property, and then take δ as the minimum of these), and then

‖E(x, h)‖ ≤
n∑

i,j=1

‖h‖2
∫ 1

0
(1− t)‖(DiDjf)(x+ th)− (DiDjf)(x)‖ dt

≤
n∑

i,j=1

‖h‖2
∫ 1

0
(1− t)ε dt = n2‖h‖2 ε

2
(1− t)2|10 = n2

ε

2
‖h‖2 < ‖h‖2n2ε

follows, so given ε ′ > 0, choosing ε = ε ′/n2, this δ > 0 yields

lim
h→0
‖h‖−2‖E(x, h)‖ = 0.

Assuming F is Ck, proceeding inductively, we get

F (1) =

k−1∑
j=0

1

j!
DjF (0) +

1

(k − 1)!

∫ 1

0
(1− t)k−1DkF (t) dt (4)

from (2), as is straightforward to check. Also, using the chain rule inductively

D`F (t) =

n∑
i1=1

. . .

n∑
i`=1

hi1 . . . hi`(Di1 . . . Di`f)(x+ th).

Hence we conclude Taylor’s theorem with an integral remainder formula as above:

Theorem 1 If x ∈ Rn, ρ > 0, f : Bρ(x)→ Rm is Ck then for ‖h‖ < ρ,

f(x+ h) =

k−1∑
j=0

n∑
i1=1

. . .

n∑
ij=1

1

j!
hi1 . . . hij (Di1 . . . Dijf)(x)

+
n∑

i1=1

. . .
n∑

ik=1

1

(k − 1)!
hi1 . . . hik

∫ 1

0
(1− t)k−1(Di1 . . . Dikf)(x+ th) dt.

Arguing as above using the continuity of the partial derivatives, if we write

(Di1 . . . Dikf)(x+ th) = (Di1 . . . Dikf)(x) + ((Di1 . . . Dikf)(x+ th)− (Di1 . . . Dikf)(x)),

using
∫ 1
0 (1− t)k−1 dt = − 1

k (1− t)k|10 = 1
k , we get

f(x+ h) =
k∑
j=0

n∑
i1=1

. . .
n∑

ij=1

1

j!
hi1 . . . hij (Di1 . . . Dijf)(x) + Ek(x, h),

Ek(x, h) =
n∑

i1=1

. . .
n∑

ik=1

1

(k − 1)!
hi1 . . . hik

∫ 1

0
(1− t)k−1

(
(Di1 . . . Dikf)(x+ th)− (Di1 . . . Dikf)(x+ th)

)
dt,

and
lim
h→0
‖h‖−k‖Ek(x, h)‖ = 0.



Note: iff is real valued, one can get an alternative version of Taylor’s theorem: there exists θ ∈ (0, 1)
such that

f(x+ h) =
k−1∑
j=0

n∑
i1=1

. . .
n∑

ij=1

1

j!
hi1 . . . hij (Di1 . . . Dijf)(x)

+

n∑
i1=1

. . .

n∑
ik=1

1

k!
hi1 . . . hik(Di1 . . . Dikf)(x+ θh).

Notice that this is just the statement that there exists θ ∈ (0, 1) such that

1

k

n∑
i1=1

. . .

n∑
ik=1

hi1 . . . hik(Di1 . . . Dikf)(x+θh) =

n∑
i1=1

. . .

n∑
ik=1

hi1 . . . hik

∫ 1

0
(1−t)k−1(Di1 . . . Dikf)(x+th) dt,

i.e. if we let

φ(t) =

n∑
i1=1

. . .

n∑
ik=1

hi1 . . . hik(Di1 . . . Dikf)(x+ th)

then there exists θ ∈ (0, 1) such that

φ(θ) =

∫ 1

0
k(1− t)k−1φ(t) dt.

To see this, let I =
∫ 1
0 k(1 − t)k−1φ(t) dt, and note that there must exist t1, t2 ∈ [0, 1] such that

φ(t1) ≤ I and φ(t2) ≥ I for if say φ(t) > I for all t ∈ [0, 1] then

I =

∫ 1

0
k(1− t)k−1φ(t) dt >

∫ 1

0
k(1− t)k−1I dt = −(1− t)k|10I = I,

which is a contradiction. Having found such t1, t2, if φ at either one of them is I, we are done, otherwise
suppose t1 < t2 (with t1 > t2 analogous), and use the intermediate value theorem: a continuous real-
valued function on [t1, t2] with φ(t1) < φ(t2) attains all values in [φ(t1), φ(t2)], in particular attains
the value I in the interval (t1, t2); proving the claim, and completing the proof of the mean value form
of Taylor’s theorem.


