Mathematics Department Stanford University
Math 51H — Rearranging series

Recall first that a series > 7 | ap, where a, € V, V a normed vector space, converges if the sequence
of partial sums, s, = Zﬁzl an, does, and one writes

[o.¢]
g ap = lim s;.
n=1

Recall also that a series converges absolutely if > >° | [la,| converges; note that this is a real valued
series with non-negative terms. If a,, are real, ||a,|| is simply |a,|, hence the terminology. We then
have:

Theorem 1 IfV is a complete normed vector space, then every absolutely convergent series converges.

Proof: Suppose -7 ay, is absolutely convergent. Since V' is complete, we just need to show that the
sequence of partials sums, {s;}72,, sp = Zk

n—1 @n, is Cauchy, since by definition of completeness that
implies the convergence of {s;}7° ;.

But for n > m,

n m n n
Isn = smll = 11> _a; = ajll=1 Y. al< D llall.
j=1 j=1 j=m+1 j=m+1

The right hand side is exactly the difference between the corresponding partial sums of 3772, [la;]|.
Namely, with o, = >0, [|a;||, and for n > m, we have
n
lon — om| =0p —Om = Z lla;l,
Jj=m+1

where we used that ||a;|| > 0, so the sequence of partial sums is increasing, in order to drop the
absolute value. In combination,

[$n. = smll < lon — oml,
at first when n > m, but the same argument works if n < m with n, m interchanged, and if n = m,
both sides vanish.

So now to prove that {s;}7°, is Cauchy, let € > 0. Since {0}, converges, it is Cauchy, so there
exists N € N* such that for n,m > N, |0, — o] < e. Then for n,m > N, ||s, — spl| < |on —om| < &,
completing the proof. [

While the problem set shows that the rearrangement of series that do not converge absolutely leads
to many potential consequences (divergence, convergence to a different limit), absolutely convergent
series are well-behaved. First:

Definition 1 A rearrangement of Y .~ | an is a series y -, aj(n), where j : NT — NT is a bijection.
Let us consider non-negative series first (such as the norms of the terms of an arbitrary series).

Theorem 2 Suppose a, > 0 for all n € N*, a, real. Let S be the set of all finite sums of the ay,
i.e. the set of all sums >, . an where B C NT is finite. Then Y ", an converges if and only if S is
bounded, and in that case Y .- | an =sup S.

Proof: Let s, = 22:1 a, be the kth partial sum, and R be the set of partial sums {s; : k€ N*}. We
already know that the increasing sequence {s;}32, converges if and only it is bounded above, i.e. iff
R is bounded above, and in that case lim s; = sup R.



Now R C S, so if S is bounded above so is R, and sup R < sup S since sup S is an upper bound for S,
thus for R, and sup R is the least upper bound.

On the other hand, let B C NT finite, and let K = max B (exists because B is finite). Then sx =
YK a, > Y nep On since B C {1,2,..., K} and since a, > 0. Thus for all elements s =} _pan,

B finite, of S, there exists r = rx € R such that r > s. Correspondingly, if R is bounded above, then
sois S, with sup R > r > s for all s € S, i.e. sup R is an upper bound for S, so sup R > sup S.

Thus, if either one of S, R is bounded above, so is the other, i.e. both are bounded above, and one has
sup R < sup S as well as sup R > sup S, so the two are equal: supS =supR =3 a, O

As an immediate consequence we have

Theorem 3 Suppose a, > 0 for all n, a, real, and Y .7 | an converges. Then any rearrangement

oo oo o oo
Y e Gj(n) converges and Y 27 an = ) 07 Gi(n)-

Proof: This is very easy now: let S be the set of all finite sums of terms in the series as above. By the
previous theorem, Y >° | a,, converges implies that S is bounded above and } " | a,, = sup S. But the
set of finite sums of terms of the rearranged series is also S! Thus, again by the previous theorem, the

rearranged series also converges, with Y 7, aj(n) = sup S. Combining these two proves the theorem.
O

This can be used to show that real valued absolutely convergent series can be rearranged: write a,, =
Prn— qn With p,, g, > 0 being the ‘positive part’ and ‘negative part’ as in the text; if > | a,, converges

absolutely then > >° | p, and > | g, converge since py,¢n < |an|, but these can be rearranged by

the previous theorem, to converge to the same limit, and then > >, aj(n) also converges as a
Pj(n) ~ 4j(n), With

i(n)

o o0 o o o o

D % = D Pi = 29t = D Pa = ) da = D an.

n=1 n=1 n=1 n=1 n=1 n=1
The general theorem is

Theorem 4 IfV a complete normed vector space, Y o>, a, converges absolutely, then any rearrange-
ment Y21 @y converges absolutely and Y07 1 an = Y 07 Qi)

Proof: We already know that > 7, a, converging absolutely, i.e. Y oo, |la,| converging, implies
> et llajm) |l converging, i.e. 37 | ajq,) converging absolutely (and in particular converging). Thus,
the only remaining statement is to show the equality of the sums: > 7% an = > 07| aj(n).-

The key idea of the proof is that absolute convergence means given any ¢ > 0 that there are finitely
many terms in the series such that if one takes any other finitely many terms, the sum of their norms
is <e.

So let € > 0. First, since Y -, ||ak|| converges, thus is Cauchy, means that there exists N; such that
n,m > Ny implies |0y, — 04| < €, where o, = > ", ||ai||. Thus, for n > m = Nj,

n

Z llail| = on —on, <e.

i=N1+1

This is exactly the statement that any finitely many of the a; which do not include ay, . .., an, have the
sum of their norms < €. Indeed, suppose B C N is finite with all elements > N; +1. Let K = max B



(finite set, so maximum exists), and observe that for each i € B, i € {N; +1,N; +2,...,K}. Thus
, a;l| < Ii a;|| < e. Hence, by the triangle inequality one also has
i€EB i=N1+1

| ZaiH < Z lla;]| < e.

icB i€B

Now, let s = > 2 | an, resp. 7= Y 7 | aj(n), and let {sp}72, resp. {ry}32, be sequence of partial sums

of the two series. Let No = max A, A = {j71(1),...,5 Y (N1)}, so for n > No+ 1, j(n) ¢ {1,..., N1 }.
Thus, for n > N = max{Ni, N2}, the terms of both s,, and r, include a; for all i < N;. Thus,

n n n
Sn —Tn = E a; — E gy = g a; — E ag,
i=1 i=1

i=N1+1 ie{l,...n\A

where on the right hand side we dropped vazll ai = ) ;e @) from both sums whose difference we
are taking. But {N7 +1,...,n} and {1,...,n} \ A are finite sets disjoint from {1,..., N1}. Thus, by

the above observation, applied with B = {Ny 4+ 1,...,n}, resp. B={1,...,n} \ A

n
| $af<e | £

i=N1+1 1€{l,...,n}\A

<e.

We thus conclude that

< 2¢e.

n
bsw=ral < 3w+ X w

i=N1+1 ie{l,..n\A

In summary, we have shown that for all € > 0 there exists N such that for n > N, |s,, — r,,| < 2. This
shows that lim(s,, — r,) = 0, and thus lim s,, = lim r,,, since both sequences of partial sums converge.
O



