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Math 51H – Open and closed sets

We saw that Bolzano-Weierstrass in R implies the compactness of intervals [a, b]. The analogue of
Bolzano-Weierstrass in Rn also holds:

Theorem 1 Suppose {x(k)}∞k=1 is a bounded sequence in Rn, i.e. that there exists R such that ‖x(k)‖ ≤
R for all k. Then {x(kj)}∞j=1 has a convergent subsequence.

This is Exercise 2.3 in Chapter 2 of the text; it uses that convergence of a sequence {x(k)}∞k=1 in Rn

is equivalent to the convergence of the component sequences {x(k)
j }∞j=1. (See the textbook.)

Recall that the compactness of a metric space (X, d) means that every sequence has a convergent
subsequence. If K ⊂ X, equipped with the relative metric, then the statement that (K, d) is compact
is equivalent to every sequence in K having a subsequence converging in the space (X, d) to a point
x ∈ K. Thus, we can directly talk about a subset of a metric space being compact.

So now suppose that K is a bounded subset of Rn, and {x(k)}∞k=1 is a sequence in K. Then by
Bolzano-Weierstrass there is a convergent subsequence {x(kj)}∞j=1 with limit x = limj→∞ x(kj) ∈ Rn.
In order to say that K is compact, we need to be able to conclude that x ∈ K as well. Thus, a very
important concept, in a general metric space is:

Definition 1 Suppose C is a subset of a metric space (X, d). We say that x ∈ X is a limit point of
C if there exists a sequence in C convegenging to x.

A set C in (X, d) is closed if it contains all of its limit points.

Note that every point in C is a limit point of C (take the constant sequence x, x, x, . . .); the point of
being closed is that the opposite inclusion also holds, i.e. C is exactly the set of its limit points.

Notice also that closed intervals are closed, thus their name is reasonable.

Proposition 1 A closed and bounded subset K of Rn is compact.

Proof: We already say that if K is bounded, every sequence in K has a subsequence converging to
some x ∈ Rn. Thus, x is a limit point of K. Since K is closed, x ∈ K, so indeed every sequence in K
has a subsequence converging to a point in K. �

We discuss the converse direction as well. For this we need the notion of an open ball in a metric
space:

Bρ(y) = {x ∈ X : d(x, y) < ρ}.
A subset A of a non-empty metric space is bounded if for some y ∈ X, ρ > 0, A ⊂ Bρ(y). Notice
that if X = Rn, this is equivalent to the above notion of boundedness.

In a general metric space, we have:

Proposition 2 If (X, d) is a metric space, and K ⊂ X is compact then K is closed and bounded.

Proof: Let y ∈ X. Then the distance function from y, f(x) = d(x, y), is continuous on X (check using
the triangle inequality), thus by the compactness of K it is bounded on K, so K is bounded (take
ρ > sup f , then K ⊂ Bρ(y)).

On the other hand, suppose {xn}∞n=1 is a sequence in K that converges to some x ∈ X. Then
every subsequence of {xn}∞n=1 also converges to x. But by compactness of K, there is a subsequence
converging to a point in K. Thus, x ∈ K. So K contains all of its limit points, so it is closed. �

In a general metric space the converse direction fails, i.e. a closed and bounded set is by no means
compact. For instance, if one takes a set with the discrete metric, the only convergent sequences are



the eventually (for sufficiently large n) constant ones (take ε = 1 in the definition of convergence), so
if one has an infinite set with the discrete metric and takes a sequence that consists of distinct points,
it cannot have a convergent subsequence even though in a metric space with the discrete metric every
set is closed and bounded.

A more interesting metric space is the following. Suppose (X, d) is a compact metric space, e.g. a
compact subset of Rn. Let V = C(X) be the set of continuous real-valued functions on X. Note that
if f is continuous, then so is |f |. Thus, in this case, |f | is a bounded function on X (with in fact the
maximum attained), so we can let

‖f‖ = sup{|f(x)| : x ∈ X}.

One checks that this is a norm on V , and concludes that V with the metric

d(f, g) = ‖f − g‖ = sup |f − g| = sup{|f(x)− g(x)| : x ∈ X}

is a metric space. When X = [0, 1], say, this is an example of a metric space in which closed and
bounded sets need not be compact; for instance the closed unit ball

B = {f ∈ C([0, 1]) : ‖f‖ ≤ 1}

is closed, bounded, but not compact. (An example of a sequence inB without a convergent subsequence
is {fn}∞n=1, fn(x) = xn for all n. One checks easily that lim fn(x) = 0 if x 6= 0, lim fn(x) = 1 if x = 1,
so if we had a convergent subsequence, it would have to converge to a function f which is 0 on [0, 1),
1 at 1, but there is no such continuous function, i.e. element of V .)

A condition closely related to closedness is openness:

Definition 2 A subset A of a metric space (X, d) is open for for all x ∈ A there is ρ > 0 such that
Bρ(x) ⊂ A.

Notice that in terms of this notion we have:

limxn = x iff ∀ρ > 0 ∃N s.t. n ≥ N ⇒ xn ∈ Bρ(x).

We then have

Proposition 3 A subset A of a metric space (X, d) is open if and only if X \A = Ac is closed.

Proof: Suppose A is open, and let {xn}∞n=1 be a sequence in Ac converging to some x ∈ X. We need
to show that x ∈ Ac. So suppose that on the contrary x ∈ A. By the openness of A there exists
ρ > 0 such that Bρ(x) ⊂ A. But limxn = x so there is N such that n ≥ N implies xn ∈ Bρ(x), so in
particular xN ∈ Bρ(x) ⊂ A, contradicting xN ∈ Ac. Thus, x ∈ Ac, and so Ac is closed.

Suppose now that A is not open. Then there exists an x ∈ A such that no ball Bρ(x), ρ > 0, is
contained in A. In particular B1/n(x) is not contained in A, i.e. it contains at least one point of Ac.
Let xn ∈ B1/n(x) ∩ Ac. Then {xn}∞n=1 is a sequence in Ac, and limxn = x /∈ Ac, so A is not closed.
�

The most important properties of open and closed sets are summarized as follows.

Proposition 4 Suppose (X, d) is a metric space. Then

1. X, ∅ are open.



2. If U1, . . . UN are open, then ∩Nn=1Un is open (finite intersection of open sets is open),

3. If {Uα : α ∈ Γ} is a collection of open sets, where Γ is a non-empty index set, then ∪α∈ΓUα is
open (arbitrary union of open sets is open).

Proposition 5 Suppose (X, d) is a metric space. Then

1. X, ∅ are closed.

2. If C1, . . . CN are closed, then ∪Nn=1Cn is closed (finite union of closed sets is closed),

3. If {Cα : α ∈ Γ} is a collection of closed sets, where Γ is a non-empty index set, then ∩α∈ΓCα is
closed (arbitrary intersection of closed sets is closed).

In view of de Morgan’s laws and Proposition 3 these two propositions are equivalent. Recall that de
Morgan’s laws state that

(∪α∈ΓUα)c = ∩α∈ΓU
c
α

and
(∩α∈ΓUα)c = ∪α∈ΓU

c
α,

i.e. the complement of a union is the intersection of complements and vice versa. (See homework.)
Moreover, they are all easy to check directly, with, perhaps surprisingly, item (2) being the most
sophisticated. For instance, in the open case, if U1, . . . , UN are open and x ∈ ∩Nn=1Un, then for all
n = 1, . . . , N there exists ρn > 0 such that Bρn(x) ⊂ Un; then let ρ = min{ρ1, . . . , ρn}, and observe
that Bρ(x) ⊂ Bρn(x) ⊂ Un for all n, thus Bρ(x) ⊂ ∩Nn=1Un. (1) is straightforward (for the empty set
there is nothing to prove, while for X any ρ, say ρ = 1, works), while (3), in the open case, is that if
x ∈ ∪α∈ΓUα, then x ∈ Uβ for some β ∈ Γ, thus there exists ρ > 0 such that Bρ(x) ⊂ Uβ, and thus,
as Uβ ⊂ ∪α∈ΓUα, Bρ(x) ⊂ ∪α∈ΓUα as claimed. It is instructive to check the properties of closed sets
directly, rather than simply using de Morgan’s laws.

One should not think that a ‘typical set’ in a metric space is either open or closed; typically it is
neither.

Apart from examples of complements of closed sets, the open ball Bρ(y), ρ > 0, is a good example
of an open set. Indeed, if x ∈ Bρ(y) then d(x, y) < ρ. So let δ = ρ − d(x, y) > 0, and observe that
Bδ(x) ⊂ Bρ(y) since if z ∈ Bδ(x) then d(z, y) ≤ d(z, x) + d(x, y) < ρ− d(x, y) + d(x, y) = ρ, where the
first inequality is the triangle inequality, and the second one is d(z, x) < ρ− d(x, y) = δ, so z ∈ Bρ(y).


