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Solutions
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covered in lecture or homework, provided they are clearly stated.
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1(a) (3 points.) (i) Give the definition of “U is open” and “C'is closed” as applied to subsets U, C C R",
and (ii) give the proof that if C,Cy are closed then C; U Cy is closed, and if Uy, Us are open then Uy N Us
is open.

Note: In (ii), at least one of the two statements should be shown directly from the definition. You may either show the other
directly, or by using an appropriate theorem.

Solution: (i) U open means that for each y € U there is a p > 0 such that B,(y) C U. C closed means
that C' contains all its limit points. That is if {x}} is a convergent sequence in R™ and z € C for each k,
then limx; € C.

(ii) If Uy, Us are open and a € Uy NUs then a € Uy, j = 1,2, so by the openness of U; there is p; > 0 such
that B, (a) C U;. Let p = min(p1, p2) > 0, so B,(a) C By, (a) C Uj for j = 1,2, and thus B,(a) C Uy NUs,
proving the openness of Uy N Us.

This implies that if C7, Cy are closed then C7 U Cs is closed, since by the theorem in lecture, a set is closed
iff its complement is open. Thus, (C1 U C3)¢ = C{ N C§ shows that (C7 U C2)° is open by what we have
shown, and thus C7 U Cs closed by the just stated theorem from lecture.

Alternatively, suppose {z} is a sequence in C7 U Cy converging to some x € R™. Then for each k, zj € C;
or z € Cy, so with Kj, j = 1,2, the set of k such that z;, € Cj, K1 UKy = NT, and thus one of Kj is
infinite. Let 7 be such that K; is infinite, and consider the subsequence {zy,, }>°_; of {x}} containing exactly
the elements of {x;} with k € K;. Then {xzy,, }7°_; is a sequence in Cj, converges to z (being a subsequence
of sequence so converging), so by the closedness of C;, x € C;, and thus z € C; U Cq, showing the claimed
closedness.

1(b) (3 points) (i) For U C R" open, give the definition of f : U — R¥ being continuous, and (ii) show
that if f : U — V C RF is continuous, U € R™, V' C R¥ are open, g : V. — R™ is continuous then g o f,
defined by (g o f)(x) = g(f(x)), is continuous.

Solution: (i) f is continuous if for all @ € U and ¢ > 0 there exists § > 0 such that ||z —a| < J, 2 € U
inplies || (z) — £(a)] < c.

(ii) Suppose f, g are as stated, and let a € U, so f(a) € V. Let € > 0. By the continuity of g there exists
§’ > 0 such that |y — f(a)|| < ¢’, y € V implies ||g(y) —g(f(a))|| < e. But then by the definition of continuity
of f, applied with ', there exists § > 0 such that ||z — a| < 0, € U implies || f(x) — f(a)| < §’. Thus,
|z —al| <8, z € U implies ||f(z) — f(a)|| < 6’ which in turn implies ||g(f(x)) — g(f(a))|| < &, showing the
claimed continuity.
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2(a) (3 points.) Let f:R? — R be defined by f(z,y) = 2(2” + y”) — 64z — y. Find all the critical points
(i.e. points where Vg2 f = 0) of f, and discuss whether these points are local max/min for f. Justify all
claims either with proof or by using a theorem from lecture.

Solution: Df(z,y) = (2% — 64,y% — 1), so there are 4 critical points (2,1),(—2,—1),(2,—1),(=2,1). The

5
6?)3 625> which gives positive definite quadratic form 6 - 3222 + 6.2 at (2,1)
and negative definite quadratic form —6-32\% — 6u? at (—2, —1). Hence by the Second Derivative test from
lecture (applicable because f is C2, in fact C*°), we see that f has a a local minimum at (2,1) and a local
maximum at (-2, —1). At the point (—2,1) the Hessian quadratic form is —6 - 32A2 + 6u2 which changes
sign (has positive max on S! and a negative min on S'), and hence, as we proved in lecture/section, it is
neither a local max nor a local min for f. (Concretely, f(z,1) has a local max at —2, f(—2,y) has a local
min at y = 1.) Similarly the point (2, —1) is neither a local max nor a local min for f.

Hessian matrix at (x,y) is <

2(b) (3 points.) Let f : R? — R be defined by f(z,y) = 1+ 322 + 5 +4(x — 1)*. Show that f is bounded
below and it attains its minimum.

Note: you do not need to find where the minimum is attained. Hint: show first that if || > 3 or |y| > 2 then f(x,y) > 65.
What is f(0,0)7

Solution: Since all terms in the expression for f are squares of real numbers, we have f(z,y) > 1, so f is
bounded below. Moreover, if |x| > 3 then |z—1| > |x|—1 > 2 (since |z| < |z—1|+1 by the triangle inequality)
so f(x,y) > 1+4+4-16 = 65 (using that all other terms are > 0). If |y| > 2 then f(z,y) > 1+ 64 = 65
(again using that all other terms are > 0). Thus, if |x| > 3 or |y| > 2 then f(z,y) > 65. On the other
hand R = {(z,9) : |z| < 3,|y| < 2} is a closed and bounded subset of R?; it is bounded directly from the
definition and closed because it is the intersection of the inverse images of the closed intervals [—3, 3] resp.
[—2, 2] under the continuous maps g(x,y) = x and h(x,y) = y, i.e. it is the intersection of two closed sets,
thus closed. Correspondingly, by the theorem in lecture, R = {(z,y) : |z| < 3,|y| < 2} is compact, and as f
is continuous, f|g attains its minimum there, say at the point (z¢, o). Note that as f(0,0) =1+4 =5 and
(0,0) € R, the minimum value f(zo,y0) <5 < 65. Since f(x,y) > 65 when (z,y) ¢ R, we conclude that the
minimum of f over R? (and not just R!) is indeed attained at (xo, o).
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3(a) (3 points) Consider the power series > > | % (i) Find its radius of convergence p. (ii) Let f(z) =
S0 L |z| < p. Show that f/(z) = £ for |z| < p.

n=1 n>

Solution: (i) First, recall that the series > >, 1/n diverges, and this is just the power series evaluated
at 1, so as a power series converges absolutely in (—p, p), if p is its radius of convergence, we must have
p < 1. On the other hand, |2"/n| < [2"], and > 7, |2"| converges for x with |z| < 1 (this being a
geometric series with common ratio |z|), by the comparison theorem for series with non-negative terms (i.e.
the convergence theorem for increasing sequences which are bounded above), Y >° | |z"/n| converges for
|z| < 1, thus (absolute convergence implies convergence) > >, % converges for |x| < 1. Hence the radius
of convergence is > 1, so in summary p = 1.

(ii) By the theorem from class, a power series is infinitely differentiable within its radius of convergence
with derivatives given by term-by-term differentiation. Hence, for |z| < 1, f/(z) exists and is f'(z) =
fo:lnxnn_l =y, = ﬁ, where the last equality comes from the sum of a convergent geometric

series.

3(b) (3 points): (i) A sequence of functions f, : [a,b] — R converges uniformly to a function f : [a,b] — R
if for all £ > 0 there is N € N such that n > N implies that sup{|f.(z) — f(z)| : = € [a,b]} < e. Show
that if f,, are continuous and f,, — f uniformly then f is continuous.

Hint: continuity of f at x requires given = € [a,b] and € > 0 finding § > 0 with certain properties. Express |f(y) — f(z)| in
terms of | f»(y) — fn(z)| and other expressions, and choose n well.

Solution: Suppose f, continuous for all n, f, converges to f uniformly. We need to show that f is
continuous. So let = € [a,b] and € > 0. For any y € [a,b] and any n we have

1F () = F@) < [f @) = fa@)] + [fa(y) = fu(@)] + [fuz) = f(2)]

by the triangle inequality. So first choose n such that the first and the last terms are guaranteed to be
small, namely choose n such that sup{|f,(z) — f(x)| : « € [a,b]} < /3, we can do this due to the uniform
convergence of f,, to f. Then the first and last terms are < £/3. Now for this n, using the continuity of f,
at x, we get 6 > 0 such that |y — z| <, y € [a,b] implies |fn(y) — fn(z)| < €/3. Thus, |y —z| <9, y € [a, b]
implies |f(y) — f(z)| < e, which proves that f is continuous, completing the proof.



Name: Page 4/4

4(a) (3 points.) (i) Give the definition of a curve 7 : [a,b] — R" having finite length, and for curves of
finite length state the definition of the “length of a curve v : [a,b] — R™.” (ii) Show that if 7 : [a,b] — R"
has the property that there is a constant K > 0 such that ||y(¢t) —y(t")|| < K|t —t'| for ¢,t" € [a,b] (one says
7 is Lipschitz) then v has finite length.

Solution: (i) A curve (a continuous map) 7 : [a, b] — R™ has finite length if the set {¢(~, P) : P partition of [a, b]}
is bounded above, in which case ¢(y) is the supremum of this set. Here (v, P) = Zjvzl v (t;) — v(ti=1)ll
where P is the partition a =ty <t; < ... <ty =b.

(ii) Suppose 7 is as above. For any partition P of [a,b], say a =ty <1 < ... <ty = b, we have

N N N
Uy, P) = () =t < YKty —ta] =Y Kty —t;-1) = K(tx —to) = K(b—a).
j=1 j=1 j=1

Thus {¢(,P) : P partition of [a,b]} is bounded above, with K (b — a) being an upper bound, and corre-
spondingly ~ has finite length; in fact ¢(v) < K(b — a).

4(b) (4 points.) (i) Show directly (without using the corollary of the implicit function theorem that we
have not proved) that the set M = {(z,y,2) € R3: 22 +y? = 22 + 1} is a 2-dimensional C'! submanifold of
R3. (i) Find the tangent space of M at the point (1,1,1), and give a basis for it.

Note: in fact, M is a C™ submanifold. You may use that /: (0,00) — (0,00) is C*.

Solution: (i) It is often convenient to use the notation (x1,x2,x3) below. By the equivalent statement to
the definition discussed in section, for each point a € M, we need to find an open set V C R? containing
it, a permutation map P, an open subset U of R? and a C' map g such that V. N M = P(G(U)), where
G(x1,22) = (x1,22,9(r1,22)). This is equivalent to saying that one of the coordinates x,y,z has to be
expressed as a graph over an open subset U of the remaining coordinates’ plane. We can write M =
My UM, _UMy UM, = Uj—12Us+ M+, where M + = {(x1,22,23) € M : +x; > 0}. Indeed, certainly
M;+ C M for all j and %, and conversely if (z1,x2,23) € M then x% + x% > 1, so at least one of 1 and x9
is nonzero, thus either positive or negative, so the point is in one of M; . Let V; 1+ = {(x1,22,23) € R3 :
+x; > 0}; this is open being the inverse image of the open set (0, 00) under the map h; + (21, z2, 23) = fa;;
then M NV, + = M, . Thus, it suffices to show that M; 4+ is the image of a permuted graph map. For the
sake of definiteness, consider M; . ; all others are similar. Points in M; y satisfy 1 > 0 and 2% + 23 = 23 +1,
thus 3 < 23 + 1, i.e. |z2| < /22 + 1, and 21 = /23 + 1 — 22, with all square roots being the non-negative
square roots of non-negative reals. Now the set U; ; = {(z9,23) : 23 < x3 + 1} C R? is open, being
the inverse image of (0,00) under the continuous map h(zs,z3) = 23 + 1 — 23, and M;  is the permuted
graph of the C*° function g1 4 (x2,23) = \/!L‘% + 1 — 3 over Uy 4, with the C* statement due to being the
composition of C*° functions, v defined over (0,00), and a polynomial. This, together with completely

analogous considerations for the other M; + proves that M is a 2-dimensional C'*° submanifold of R3.

(ii) Notice that (1,1,1) € M; 4+, so by the theorem in lecture the tangent space to M at (1,1,1) is the span
of the partial derivatives of the graph map, with the latter being linearly independent and thus forming a
basis. Concretely, the permuted graph map is G(z2,z3) = (V@3 + 1 — 123,22, 23), (v2,23) € Up 4, so a basis
of the tangent space at G(x2,x3) is given by

(—1'2/ ‘%%—i_l —$%,1,0)T,($3/ .%'%—Fl _x%7071)T7

i.e.at (1,1,1) (corresponding to G(1,1)) by (—1,1,0)7,(1,0,1)". Note that these vectors are indeed orthog-
onal to the gradient of f(x1,29,73) = 27 + 23 — 23 — 1, which is Vf = (221, 229, —223)7, i.e. is (1,1,—1)"
at (1,1,1), thus their span (being 2-dimensional) is exactly the orthocomplement of the span of Vf.









