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75 MINUTES

Unless otherwise indicated, you can use results
covered in lecture or homework, provided they are clearly stated.

If necessary, continue solutions on backs of pages
Note: work sheets are provided for your convenience, but will not be graded
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1(a) (3 points.) (i) Give the definition of “U is open” and “C is closed” as applied to subsets
U,C ⊂ Rn, and (ii) give the proof that Rn \ C open implies C closed.

Note: In lecture we proved Rn \C is open ⇐⇒ C is closed; in (ii) you are only being asked to give the proof of “⇒.”

1(b) (4 points) (i) Give the definition of f : Rn → Rk being continuous, and (ii) show that if
f : Rn → Rk is continuous and U ⊂ Rk is open, C ⊂ Rk is closed then f−1(U) = {x : f(x) ∈ U}
is open and f−1(C) = {x : f(x) ∈ C} is closed.
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2(a) (3 points.) Let f : R2 → R be defined by f(x, y) = 1
5(x5 + y5) + 1

3x
3 − 2x − y. Find all

the critical points (i.e. points where ∇Rnf = 0) of f , and discuss whether these points are local
max/min for f . Justify all claims either with proof or by using a theorem from lecture.

2(b) (2 points.) Let f : R2 → R be defined by f(x, y) =
√

1 + x2 + y2. Find the tangent space
of the graph of f at (2, 2, 3) ∈ R3.
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3(a) (3 points): (i) State the definition of “
∑∞

n=0 an converges,” resp. “
∑∞

n=0 an converges abso-
lutely,” and (ii) show that if

∑∞
n=0 anc

n converges then
∑∞

n=0 anx
n converges absolutely for x ∈ R

with |x| < |c|.

3(b) (3 points) If cosx, sinx are defined by cosx =
∑∞

k=0(−1)k x2k

(2k)! and sinx =
∑∞

k=0(−1)k x2k+1

(2k+1)! ,

prove, for all x ∈ R, d
dx cosx = − sinx, d

dx sinx = cosx, and sin2 x+ cos2 x = 1.
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4(a) (4 points.) (i) Give the definition of a curve γ : [a, b] → Rn having finite length, and for
curves of finite length state the definition of the “length of a curve γ : [a, b]→ Rn.” (ii) Show that

if γ : [a, b]→ Rn has the property that γ|(a,b] is C1 and limc→a

∫ b
c ‖γ

′(t)‖ dt exists then γ has finite

length, equal to limc→a

∫ b
c ‖γ

′(t)‖ dt.
Hint: Any curve is continuous by definition. Use this, and the definition of length together with the theorem from
lecture for C1 curves.

4(b) (3 points.) (i) Show that the map γ : [0, 1]→ R2 given by γ(0) = 0, γ(t) = (t cos log t, t sin log t)
is continuous, C1 on (0, 1], but not on [0, 1], and (ii) show that γ has finite length, and compute it.

Note: γ is called a logarithmic spiral. You may use the results of 4(a) even if you have not proved them.
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