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Unless otherwise indicated, you can use results
covered in lecture or homework, provided they are clearly stated.
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1(a) (3 points) State the chain rule for the composite function g ◦ f , where f : U → V and g : V → Rp, where
U ⊂ Rn and V ⊂ Rm are open. Using the chain rule, or otherwise, prove that if g : Rn → R is differentiable on
Rn, if a, b ∈ Rn, and if h(t) = g(a+ tb) for t ∈ R, then h ′(0) exists, and find its value in terms of the components
b1, . . . , bn of b and the partial derivatives of g at a.

1(b) (3 points.) (i) Give the definition of “U is open” and “C is closed” as applied to subsets U,C ⊂ Rn, and
(ii) give the proof that Rn \ U closed implies U open.

Note: In lecture we proved Rn \ U is closed ⇐⇒ U is open; in (ii) you are only being asked to prove “⇒.”
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2(a) (3 points): Suppose δ > 0 and
∑∞

n=0 anx
n,
∑∞

n=0 bnx
n are convergent power series in (−δ, δ). Prove∑∞

n=0 anx
n =

∑∞
n=0 bnx

n for each x ∈ (−δ, δ) implies that an = bn for each n = 0, 1, 2, . . ..

Hint: Since we can take cn = an − bn, it suffices to prove
∑∞

n=0cnx
n = 0∀x ∈ (−δ, δ)⇒ cn = 0∀n = 0, 1, 2, . . ..

2(b) (3 points.) (i) Prove that the series
∑∞

n=0
xn

n! is AC on all of R.

(ii) If we define expx =
∑∞

n=0
xn

n! , prove that exp(x+ t) = (expx)(exp t).

Hint for (ii): For fixed t let f(x) = exp(x+ t) and g(x) = (exp t)(expx). Start by checking that f (n)(0) = g(n)(0)
for each n = 0, 1, 2, . . ..
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3(a) (4 points.) Let f : R2 → R be defined by f(x, y) = 1
3y

3 +xy+x2. Find the critical points (i.e. points where
∇R2f = 0) of f , and state whether each critical point is a local max, local min or neither. Make sure you justify
all claims you make in your argument, either with a proof or by quoting the appropriate theorem from lecture.

3(b) (3 points.) Give the definition of “length of a curve γ : [a, b]→ Rn.” Using any theorem from lecture that
you need, find the length of γ in case n = 2 and γ(t) = (sin t2, cos t2), t ∈ [0, 2].
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4(a) (3 points.) Prove that M = {x = (x1, x2, x3) ∈ R3 : x23 = 1 + x21 + x22} is a C1 manifold, and find the
tangent space TaM at the point a = (2, 2,−3).

Note: You should give a basis for the tangent space.

4(b) (3 points.) (i) If M is a k-dimensional C1 submanifold of Rn (n ≥ 2 and 1 ≤ k ≤ n − 1 given), and
f : W → R is C1 with W ⊂ Rn open, W ⊃M , give the definition of “the tangential gradient ∇Mf” and “a critical
point of f |M .” (ii) In the special case when M = Sn−1 (so k = n − 1 and f is C1 on an open set W ⊃ Sn−1)
prove that f |Sn−1 has at least two distinct critical points a, b ∈ Sn−1.
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