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1 (a) (3 points): (i) Give the ε,N definition of “lim an = `,” where {an}n=1,2,... is a given
sequence in R and ` ∈ R, and (ii) use your definition to prove that if {an}n=1,2,..., {bn}n=1,2,...

satisfy lim an = `, lim bn = m, then lim(an − bn) = `−m.

Note for (ii): You may not use any of our limit theorems to prove (ii), only the definition of the limit, and properties
of the reals.

Solution: lim an = ` means that for each ε > 0 there is N such that |an − `| < ε for all n ≥ N .

Now, suppose ε > 0. Since lim an = `, applying the definition with ε/2 > 0 means that there is N1

such that n ≥ N1 implies |an − `| < ε/2. Similarly, lim bn = m means that there is N2 such that
|bn −m| < ε/2 for n ≥ N2. Thus, for n ≥ N = max(N1, N2),

|(an − bn)− (`−m)| = |(an − `) + (m− bn)| ≤ |an − `|+ |m− bn| < ε,

proving the conclusion.

1(b) (3 points): Suppose that S is a bounded non-empty subset of R with the property that
x, y ∈ S, x < z < y imply that z ∈ S. Let a = inf S, b = supS. Show that S must be one of the
intervals (a, b), (a, b], [a, b), [a, b] (with only the last possibility if a = b).

Hint for (b): The conclusion is equivalent to a < z < b implying that z ∈ S, together with z /∈ [a, b] implying z /∈ S.

Solution: Suppose a < z < b. As z > a, z is not a lower bound for S, i.e. there exists some x ∈ S
such that x < z. Similarly, as z < b, z is not an upper bound for S so there exists some y ∈ S such
that z < y. Thus, x < z < y, x, y ∈ S, so z ∈ S. Thus, (a, b) ⊂ S.

Now, if z < a then z /∈ S since a is a lower bound for S, and similarly if z > b then z /∈ S since b
is an upper bound for S. Thus (−∞, a) ∪ (b,+∞) ⊂ Sc = R \ S.

As R = (−∞, a) ∪ {a} ∪ (a, b) ∪ {b} ∪ (b,∞), the only question is whether a and b are in S; listing
the four possibilities (only two if a = b) gives the four intervals (only one if a = b as we assumed
that S was non-empty).
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2(a) (3 points): (i) Give the definition of a collection v1, . . . , vk of vectors in Rn being linearly
independent, and (ii) if v1, . . . , vk are non-zero mutually orthogonal (i.e. vi · vj = 0∀ i 6= j) vectors
in Rn, prove that v1, . . . , vk are linearly independent.

Solution: A collection v1, . . . , vk of vectors in Rn is linearly independent if there is no non-
trivial linear combination of them which is 0, i.e.

∑k
j=1 cjvj = 0 implies cj = 0 for all j. (ii)∑k

j=1 cjvj = 0⇒ 0 = vi · (
∑k

j=1 cjvj)⇒ 0 =
∑k

j=1 cjvi · vj = ci‖vi‖2 ⇒ ci = 0 for each i = 1, . . . , k,

where we used the fact that vi · vj = 0 if j 6= i and = ‖vi‖2 6= 0 if j = i.

2(b) (4 points): Suppose that V is a non-trivial subspace of Rn. Show that there is an orthogonal
basis of V , i.e. that there is a basis {v1, . . . , vk} for V with vi · vj = 0 if i 6= j. (You may assume
the result of part (a) even if you have not proved it.)

Hint for (b): As in the proof of the basis theorem, consider a maximum size set of non-zero mutually orthogonal
vectors; you need to show along the way that this exists. Orthocomplements may be useful in proving the spanning
property.

Solution: If {v1, . . . , vk} is any collection of mutually orthogonal non-zero vectors, it is linearly
independent by part (a), so by the linear dependence lemma, k ≤ n. Moreover, as V is non-trivial,
there exists a non-zero vector v in it; then {v} is an orthogonal collection (a set with one non-zero
element). Now let

S = {k : ∃{v1, . . . , vk} mutually orthogonal non-zero in V }.

Then S is a non-empty set of positive integers, bounded above by n, thus it has a maximal element;
let k = maxS. Let {v1, . . . , vk} be mutually orthogonal in V ; these exist by the very definition
of k. Now let W = span{v1, . . . , vk} + V ⊥, with V ⊥ the orthocomplement of V in Rn. Then
W ⊕W⊥ = Rn. If W⊥ 6= {0} then there exists x 6= 0, x ∈ W⊥, so x is orthogonal to all vj , and
x is orthogonal to all elements of V ⊥. The latter means x ∈ (V ⊥)⊥ = V . Then {v1, . . . , vk, x} are
k + 1 mutually orthogonal non-zero vectors in V , so k + 1 ∈ S, which contradicts our choice of k.
Thus, W⊥ = {0}, so W = Rn, i.e. span{v1, . . . , vk}+V ⊥ = Rn. Notice that the first summand is a
subspace of V , so any v ∈ V can be written as y+z, y ∈ span{v1, . . . , vk} ⊂ V , z ∈ V ⊥. Since there
is a unique way of writing any element of Rn, in particular any element v of V as a vector in V plus
one in V ⊥, and as v = v + 0 is such a decomposition, we conclude that v = y ∈ span{v1, . . . , vk},
so V = span{v1, . . . , vk}. Since {v1, . . . , vk} are linearly independent, this means that they form a
basis of V , as claimed.

Alternative (simpler) argument using orthocomplements within V : Find v1, . . . , vk as
above, but let W = span{v1, . . . , vk}. Now, V = W ⊕W⊥

V with W⊥
V = {v ∈ V : v ·w = 0 ∀ w ∈W}

the orthocomplement of W in V , so W = V if and only if W⊥
V = {0}. But if W⊥

V 6= {0} then there
is x ∈W such that x 6= 0, and then {v1, . . . , vk, x} are k + 1 mutually orthogonal non-zero vectors
in V , so k + 1 ∈ S, which contradicts our choice of k. So W⊥

V = 0, and thus V = span{v1, . . . , vk}.
Since {v1, . . . , vk} are linearly independent, this means that they form a basis of V , as claimed.
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3(a) (3 points): Suppose A is an n × n matrix and b ∈ Rn. Show that if C(A) = Rn then that
Ax = b has a unique solution for each b ∈ Rn. (You need to show both existence and uniqueness.)

Hint: Use the rank/nullity theorem.

Solution: For any x ∈ Rn, Ax =
∑n

j=1 xjαj , where αj is the j’th column of A. Thus {Ax : x ∈
Rn} = span{α1, . . . , αn} = C(A), so b ∈ {Ax : x ∈ Rn} ⇐⇒ b ∈ C(A). Correspondingly, if
C(A) = Rn, then Ax = b has a solution for all b ∈ Rn.

If C(A) = Rn then the rank/nullity theorem tells us that the dimension of N(A) is 0, i.e. N(A) =
{0}. But, if Ax = b and Ay = b then A(x − y) = Ax − Ay = b − b = 0, so x − y ∈ N(A). So
N(A) = {0} gives x = y, which is the desired uniqueness.

3(b) (3 points): Suppose that V,W are subspaces of Rn and V ⊂W . Show that if dimV = dimW
then V = W .

Solution: If V is the trivial subspace of Rn, then dimW = 0 and thus W is also the trivial
subspace, completing the proof in this case.

If V is not the trivial subspace, then V has a basis {v1, . . . , vk}. These are linearly independent
and lie in W , thus by the basis theorem, applied to W , there exists a basis {w1, . . . , wk, . . . , wm}
of W with m ≥ k and with wj = vj for j ≤ k. In particular, dimW = m ≥ k = dimV . Since we
know dimV = dimW , we have m = k, i.e. {v1, . . . , vk} is a basis of W as well. Thus, W is the
span of these vectors, i.e. W = V .
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4 (6 points): Find (i) rrefA (showing all row operations), (ii) a basis for the null space N(A) and
(iii) a basis for the column space of A, if

A =

 1 1 0 0 3
0 2 4 1 −1
−1 0 0 1 2


Solution: (i) 1 1 0 0 3

0 2 4 1 −1
−1 0 0 1 2


r3 7→ r3 + r1

 1 1 0 0 3
0 2 4 1 −1
0 1 0 1 5

 r2 7→ r2/2

 1 1 0 0 3
0 1 2 1/2 −1/2
0 1 0 1 5



r3 7→ r3 − r2

 1 1 0 0 3
0 1 2 1/2 −1/2
0 0 −2 1/2 11/2


r3 7→ −r3/2

 1 1 0 0 3
0 1 2 1/2 −1/2
0 0 1 −1/4 −11/4


r1 7→ r1 − r2

 1 0 −2 −1/2 7/2
0 1 2 1/2 −1/2
0 0 1 −1/4 −11/4

 r1 7→ r1 + 2r3
r2 7→ r2 − 2r3

 1 0 0 −1 −2
0 1 0 1 5
0 0 1 −1/4 −11/4


(ii)

rrefAx = 0 ⇐⇒
(
x1 = x4 + 2x5, x2 = −x4 − 5x5, x3 =

1

4
x4 +

11

4
x5

)
⇐⇒ x = x4(1,−1,

1

4
, 1, 0)T + x5(2,−5,

11

4
, 0, 1)T

with x4, x5 arbitrary, so N(A) = N(rrefA) = span{(1,−1, 14 , 1, 0)T, (2,−5, 114 , 0, 1)T}, and these two
vectors are indeed linearly independent (by inspection of the last two components, or the general
result from lecture), so they give a basis for N(A).

(iii) The pivot columns of rrefA are the first, second and third columns, so from lecture a basis for
C(A) is obtained by taking the first, second and third columns of A; that is, a basis for C(A) is
(1, 0,−1)T, (1, 2, 0)T, (0, 4, 0)T.
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