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1(a) (3 points): Find (with detailed proof!) detA, detB and det(AB) if

A =


0 0 1 2

0 0 2 1

0 3 0 0

2 0 0 0

 , B =


1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1

 .

Solution: The determinant of a matrix C with entries cij is detC =
∑

σ∈Sn
(signσ)cσ11 . . . cσnn,

where the sum is over permutations of {1, . . . , n}. This means that each summand takes one

entry from each column of C, and the entries corresponding to different columns must come

from different rows. In particular, in the case of A there are only two non-zero summands

when we take into account that the product vanishes if any factor vanishes. Indeed, the

only non-trivial summands are those with σ satisfying σ1 = 4, σ2 = 3, and either σ3 = 1

in which case σ4 = 2, or σ3 = 2 in which case σ4 = 1. The sign of the first permutation,

(4, 3, 1, 2) is −1, as the number of inversions is 2 + 2 + 1, and that of the second, (4, 3, 2, 1)

is 1 as the number of inversions is 3 + 2 + 1. Thus,

detA = −2 · 3 · 1 · 1 + 2 · 3 · 2 · 2 = 6 · 3 = 18.

Since B is upper triangular, the only non-trivial summand corresponds to the identity

permutation (1, 2, 3, 4) (namely we need σk ≤ k for all k, but the injectivity of σ means

σk = k in this case), which has no inversions, so has sign 1, and thus detB = +1 ·1 ·1 ·1 = 1.

Since det(AB) = det(A) det(B) for all matrices A,B, in this case we have det(AB) = 18 as

well.

(b) (3 points) Suppose A : V →W is linear where V,W are finite dimensional real vector

spaces. Let N(A) = {x ∈ V : Ax = 0} and R(A) = {Ax : x ∈ V } ⊂ W . Show that

dimN(A) + dimR(A) = dimV .

Note: If you want, you may use matrices, but be specific about the correspondence between matrices and
operators. Also, this problem works over any field.

Solution: First, N(A) is a subspace of V , and V is finite dimensional, so there is a

basis e1, . . . , ek of N(A) (with possibly k = 0), and this can be extended to a basis

e1, . . . , ek, ek+1, . . . , en of V . We claim that Aek+1, . . . Aen is a basis of R(A), which will

finish the problem since in this case dimR(A) = n− k, dimN(A) = k, dimV = n.

First, Aek+1, . . . Aen span R(A) because any element y of R(A) is of the form y = Ax =

A
∑n

j=1 cjej (using that e1, . . . , en is a basis of V ), thus y =
∑n

j=1 cjAej =
∑n

j=k+1 cjAej ,

where the penultimate step used ej ∈ N(A) for j ≤ k, so Aej = 0. Thus, Aek+1, . . . Aen
span R(A).

On the other hand, Aek+1, . . . Aen are linearly independent for if
∑n

j=k+1 cjAej = 0 then

0 = A
∑n

j=k+1 cjej , so
∑n

j=k+1 cjej ∈ N(A), so
∑n

j=k+1 cjej =
∑k

j=1 djej , so
∑n

j=1 cjej = 0

if we let cj = −dj for j ≤ k. But e1, . . . , en are linearly independent by construction,

so cj = 0 for all j, and thus we conclude that Aek+1, . . . Aen are linearly independent,

hence they give a basis for R(A), proving the claim, and thus completing the proof of

dimN(A) + dimR(A) = dimV .
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2 (a) (21
2 points): Suppose that f : Rn → R and let a be a given point of Rn. Give the

proof that if there is ρ > 0 such that the partial derivatives Djf(x), j = 1, . . . , n exist for

‖x− a‖ < ρ and are continuous at a, then f is differentiable at a.

Solution: As in lecture let h = (h1, . . . , hn)T and define hj = (h1, . . . , hj , 0, . . . , 0) for

j = 1, . . . , n, and h0 = 0. Then

f(a+ h)− f(a) =
n∑
j=1

(f(a+ hj)− f(a+ hj−1)) =
n∑
j=1

hjDjf(hj−1 + θjhjej)

for some θj ∈ (0, 1) by the mean-value theorem from 1-variable calculus. Thus for 0 <

‖h‖ < ρ we have

‖f(a+ h)− f(a)−
n∑
j=1

hjDjf(a)‖ = ‖
n∑
j=1

hj
‖h‖

(Djf(a+ hj−1 + θjhjej)−Djf(a))‖

≤
n∑
j=1

‖(Djf(a+ hj−1 + θjhjej)−Djf(a))‖ → 0

as h→ 0 because Djf(x) is continuous at x = a.

(b) (31
2 points): State (without proof) the Lagrange multiplier theorem, and use it (to-

gether with any other theorems from lecture that you need) to find a point where the

function xy + z3 takes its maximum subject to the constraint that x4 + y4 + z4 = 1, and

justify your answer.

Note: Your discussion should include the reason that the maximum exists.

Solution: The Lagrange multiplier theorem states that if g1, . . . , gk are C1 functions on

U ⊂ Rn open, with linearly independent differentials on their joint zero set S = {x ∈ U :

g1(x) = . . . = gk(x) = 0} then at any critical point x of f |S for any C1 function f : U → Rn,

there exists λj ∈ R, j = 1, . . . , k, such that Df(x) =
∑k

j=1 λjDgj(x).

Let g(x, y, z) = x4 + y4 + z4 − 1 defined on R3, and let S = {(x, y, z) : g(x, y, z) = 0}. If

(x, y, z) ∈ S, then x4 + y4 + z4 = 1 shows that x4, y4, z4 ≤ 1 since all summands are non-

negative. Thus, |x|, |y|, |z| ≤ 1, so S is bounded. On the other hand, the map g is C∞, so in

particular continuous, so g−1({0}) = S is closed since {0} ⊂ R is closed. Correspondingly

S is compact (as it is closed and bounded), so any continuous function, such as f |S , attains

its maximum and minimum on S.

We have g is C∞ and Dg(x, y, z) = (4x3, 4y3, 4z3), so the vanishing of Dg means x =

y = z = 0, and thus Dg does not vanish on S. Correspondingly, by the implicit function

theorem, S is a C∞ submanifold of R3. Further, any critical points p of f |S , which includes

all local maxima and minima, satisfy that Df(p) = λDg(p) for some λ ∈ R by the Lagrange

multiplier theorem. Since Df(x, y, z) = (y, x, 3z2), this means that y = 4λx3, x = 4λy3,

3z2 = 4λz3. If λ = 0, this gives (x, y, z) = 0, but this is not in S, so to find critical points

of f |S we may assume λ 6= 0. Substituting y from the first equation into the second gives

x = 256λ4x9, so either x = 0 or 256λ4x8 = 1, i.e. λx2 = ±1
4 ; it also gives y = (4λx2)x = ±x,

so z4 = 1− 2x4.

If x = 0, we have y = 0 as well, thus z = ±1 on S, in which case by the third equation

3 = 4λ(±1)3, which has a solution λ ∈ R, thus (0, 0,±1) are critical points of f |S and
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f(0, 0, 1) = 1, f(0, 0,−1) = −1. Note that for a open set O containing (0, 0,±1), such as

O = {(x, y, z) : z > 0}, on O ∩ S we have z = ±(1 − x4 − y4)1/4, and thus f |S(x, y, z) =

xy ± (1 − x4 − y4)3/4, with the last term having vanishing first and second derivatives

by the chain rule. Thus, the quadratic approximation of f at (0, 0,±1) is xy ± 1, and

xy = 1
4((x+ y)2− (x− y)2) is a quadratic form with mixed type (taking y = x gives a local

minimum, y = −x a local maximum), so these points are not local minima or maxima.

On the other hand, if λx2 = ±1
4 , so x 6= 0, so 4λ = ±x−2, the third equation gives 3z2 =

±z3/x2, i.e. z2(z±3x2) = 0, so z = 0 or z = ±3x2. Now if z = 0 (and x = ±y), so 2x4 = 1 by

being on S, and thus x, y = ±2−1/4, so (2−1/4, 2−1/4, 0), (2−1/4,−2−1/4, 0), (−2−1/4, 2−1/4, 0)

and (−2−1/4,−2−1/4, 0) are critical points of f |S , and f(2−1/4, 2−1/4, 0) = 2−1/2 < 1 and

f(−2−1/4,−2−1/4, 0) = 2−1/2 < 1, while at the other two crititcal points the value is the

negative of these so > −1, so in view of f(0, 0,±1), these are not maxima/minima of f .

It remains to consider z = ±3x2, which gives 2x4 + 81x8 = 1 by being on S, thus x4 =
−2±

√
4+4·81

2·81 = 1
81(−1 ±

√
82). Since x4 ≥ 0, we must have the + sign in ±, and thus x is

given by ± the 4th root of this, while y is ±x. Since 9 <
√

82 < 10, we obtain a number

x4 ∈ ( 8
81 ,

9
81), so x4 < 1/2, and 1 − 2x4 > 0, hence there is a corresponding point z with

(x, y, z) ∈ S, namely z = ±(1 − 2x4)−1/4. Rather than computing the values to find the

biggest one, note that when y = ±x, z = ±3x2, f(x, y, z) = ±x2 ± 27x6, which is the

largest for fixed |x| when all signs are +, and the smallest when all signs are −. Thus,

the maximum of f is attained at the point (x, x, 3x2) when x = ±1
3(−1 +

√
82)1/4 and the

minimum at (x,−x,−3x2) when x = ±1
3(−1 +

√
82)1/4.
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3(a) (3 points): Suppose (X, dX) and (Y, dY ) are metric spaces (if you wish, you may

assume X ⊂ Rn, Y ⊂ Rm with the relative metric). Show that f : X → Y is continuous if

and only if for all U ⊂ Y open, f−1(U) = {x ∈ X : f(x) ∈ U} is open.

Solution: Suppose first that f is continuous, and let U ⊂ Y be open. Suppose x ∈
f−1(U), i.e. f(x) ∈ U . Then as U is open there exists ε > 0 such that Bε(f(x)) ⊂ U , i.e.

dY (y, f(x)) < ε implies y ∈ U . But f is continuous, so there is δ > 0 such that dX(x ′, x) < δ

implies dY (f(x ′), f(x)) < ε. Correspondingly, if x ′ ∈ Bδ(x) then f(x ′) ∈ Bε(f(x)) ⊂ U ,

and thus x ′ ∈ f−1(U). Thus, Bδ(x) ⊂ f−1(U). Since x ∈ f−1(U) was arbitrary, this shows

that f−1(U) is open.

Conversely, suppose f : X → Y has the property that the inverse image under f of any

open set is open. If x ∈ X and ε > 0, then Bε(f(x)) is open in Y , and thus f−1(Bε(f(x)))

is open in X. Hence, as x ∈ f−1(Bε(f(x))) (since f(x) ∈ Bε(f(x))) there exists δ > 0 such

that Bδ(x) ⊂ f−1(Bε(f(x))), i.e. if x ′ ∈ Bδ(x) then f(x ′) ∈ Bε(f(x)), i.e. if dX(x ′x) < δ

then dY (f(x ′), f(x)) < ε, which proves the continuity of f .

(b) (3 points) Assume sinx, cosx are defined as usual by the power series
∑∞

n=0(−1)n x2n+1

(2n+1)!

and
∑∞

n=0(−1)n x2n

(2n)! respectively. Then (i) prove d
dx sinx = cosx and d

dx cosx = − sinx,

and (ii) prove the identity sin(x+ a) = sinx cos a+ cosx sin a.

Hint for (ii): For fixed a define fa(x) = sin(x+a)− sinx cos a− cosx sin a and start by showing that
dn

dxn fa(x)|x=0 = 0 for all n = 0, 1, 2, . . ..

Solution: (i) Both series have infinite radius of convergence (e.g., if x 6= 0 we have

| x2n+3

(2n+3)!/(
x2n+1

(2n+1)!)| = x2/((2n + 3)(2n + 2)) → 0 as n → ∞, so we have absolute conver-

gence of
∑∞

n=0(−1)n x2n+1

(2n+1)! for all x by the ratio test, and a similar argument holds for the

other series). By the relevant theorem from lecture we thus have that all derivatives of the

series exist and can be obtained by termwise differentiation, whence d
dx sinx = cosx and

d
dx cosx = − sinx.

(ii) By the chain rule and (i), f ′a(x) = cos(x + a) − cosx cos a + sinx sin a, f ′′a (x) =

− sin(x+a)+sinx cos a+cosx sin a = −fa(x), f ′′′a (x) = − cos(x+a)+cosx cos a−sinx sin a =

−f ′a(x) ..., and in general by induction f
(2k)
a (x) = (−1)k(sin(x+a)− sinx cos a− cosx sin a)

and f
(2k+1)
a (x) = (−1)k(cos(x + a) − cosx cos a + sinx sin a), so f

(2k)
a (0) = (−1)k(sin a −

0 − sin a) = 0 and f
(2k+1)
a (0) = (−1)k(cos a − cos a + 0) = 0, so in fact the Taylor se-

ries of fa is identically 0. Also |f (k)a (x)| ≤ 3 for each k = 0, 1, . . . and each x ∈ R, so

Rk max|x|≤R |f
(k)
a (x)|/k! ≤ 3Rk/k! → 0 as k → ∞, and hence for each R > 0 we have a

fixed M such that 3Rk max|x|≤R |f
(k)
a (x)|/k! ≤ M for each k = 0, 1, 2, . . . and hence by a

Theorem of lecture the Taylor series of fa converges to fa at every point of R. Thus, fa is

identically 0, which proves the claimed identity.
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4(a) (31
2 points): Find all eigenvalues and corresponding eigenvectors for the matrix 5 −2 1

−2 2 2

1 2 5


Solution: Let A be the matrix above. Eigenvalues of A are roots of the polynomial

det(A− λI), and

det(A− λI) = det

5− λ −2 1

−2 2− λ 2

1 2 5− λ


= (5− λ)2(2− λ)− 4− 4− 8(5− λ)− (2− λ)

= 50− 45λ+ 12λ2 − λ3 − 50 + 9λ = −λ3 + 12λ− 36λ = −λ(λ− 6)2,

so the eigenvalues of A are 0 and 6. The zero eigenspace is just the nullspace; for nicer

computations it is convenient to switch rows 1 and 3 then row reduce: 5 −2 1

−2 2 2

1 2 5

r1 ↔ r3
 1 2 5

−2 2 2

5 −2 1

r2 7→ r2 + 2r1
r3 7→ r3 − 5r1

1 2 5

0 6 12

0 −12 −24

 r2 7→ r2/6

r3 7→ r3 + 2r2

1 2 5

0 1 2

0 0 0


Thus, elements of the nullspace satisfy x2 = −2x3 and x1 = −2x2 − 5x3 = −x3, so they

are of the form x3(−1,−2, 1)T, and thus the 0-eigenspace is Span(−1,−2, 1)T. On the other

hand, the 6-eigenspace is N(A− 6I), so row-reducing A− 6I gives−1 −2 1

−2 −4 2

1 2 −1

r2 7→ r2 + 2r1
r3 7→ r3 + r1

−1 −2 1

0 0 0

0 0 0


so N(A − 6I) consists of vectors with −x1 − 2x2 + x3 = 0, i.e. x1 = −2x2 + x3, so it is

Span((−2, 1, 0)T, (1, 0, 1)T), with the two given vectors linearly independent in view of their

last two components.

(b) (11
2 points): Prove that the quadratic form Q(h) = 5h21 − 4h1h2 + 2h22 + 2h1h3 +

4h2h3 + 6h23 is positive definite.

Hint: compare Q with the quadratic form of the matrix in part (a).

Solution: Let Q1 denote the quadratic form of the matrix A above. Then Q(h) = Q1(h) +

h23. Now, as the eigenvalues of A are ≥ 0, Q1(h) ≥ 0 for all h, and Q1(h) = 0 if and only if

h ∈ N(A). Thus, Q(h) ≥ 0 (as h23 ≥ 0), and = 0 if and only if h ∈ N(A) and h3 = 0. But

by the above calculation the only element of N(A) with vanishing 3rd component is 0, so

Q is positive definite as claimed.
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5(a) (3 points): Suppose that {Mn}∞n=1 is a sequence with Mn ≥ 0 for all n, and
∑∞

n=1Mn

converges. Show that if {xn}∞n=1 is a sequence in a complete normed vector space (V, ‖.‖)
(if you wish, you may take V = Rm with the standard norm) and ‖xn‖ ≤Mn for all n, then∑∞

n=1 xn converges in V , i.e. limk→∞
∑k

n=1 xn exists. (This is the Weierstrass M -test.)

Solution: Since ‖xn‖ ≤Mn for all n,
∑∞

n=1 ‖xn‖ converges (in R) since it is a series with

non-negative terms, and its partial sums are bounded by those of
∑∞

n=1Mn, which are in

turn bounded by their limit,
∑∞

n=1Mn.

Now, we claim that the partial sums sn =
∑n

k=1 xk form a Cauchy sequence in V . If we

show this, the completeness of V implies that they converge, i.e. that
∑∞

k=1 xk converges,

completing the proof.

But if n > m (with n < m following by relabelling, and n = m being automatic),

‖sn − sm‖ = ‖
n∑

k=m+1

xk‖ ≤
n∑

k=m+1

‖xk‖.

On the other hand, if σn =
∑n

k=1 ‖xk‖, then σn − σm =
∑n

k=m+1 ‖xk‖ as well. Since

{σn}∞n=1 converges, it is Cauchy, so given ε > 0 there is N such that n,m ≥ N implies

|σn−σm| < ε. Thus, for n,m ≥ N , ‖sn−sm‖ ≤ |σn−σm| < ε, proving the claimed Cauchy

property, and thus completing the proof.

(b) (3 points): Show that the series
∑∞

n=1
1
n4 cos(nx) converges uniformly to a C1 function

f(x) on [0, 2π] and f ′(x) = −
∑∞

n=1
1
n3 sin(nx).

Solution: First, observe that the terms of the series, fn(x) = n−4 sinnx, are C1. Next, the

term-by-term differentiated series has terms gn satisfying |gn(x)| = |n−3 sinnx| ≤ 1/n3, so

sup |gn| ≤ 1/n3. Let Mn = 1/n3, so
∑∞

n=1Mn converges. Thus by the Weierstrass M-test,

applied in C([0, 2π]) taking into account that C([0, 2π]) is complete,
∑∞

n=1 gn converges

to some continuous function g uniformly (i.e. the partial sums so converge). Moreover,

|fn(x)| ≤ n−4, and
∑∞

n=1 n
−4 also converges, so the Weierstrass M-test shows that

∑∞
n=1 fn

converges to some continuous function f uniformly. Then by a homework problem, f is dif-

ferentiable and f ′ = g; indeed, with Gm =
∑m

n=1 gn, Fm =
∑m

n=1 fn, we have Fm is C1 (the

sum is finite!) and Fm(x) = Fm(0) +
∫ x
0 F

′
m = Fm(0) +

∫ x
0 Gm; since limFm(0) = f(0), and

since Gm → g uniformly so lim
∫ x
0 Gm =

∫ x
0 g, f(x) = limFm(x) = limFm(0)+lim

∫ x
0 Gm =

f(0)+
∫ x
0 g, and then by the fundamental theorem of calculus f is differentiable with deriva-

tive g which is continuous, so f is C1, with derivative g =
∑∞

n=1 gn = −
∑∞

n=1 n
−3 sinnx.
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6(a) (3 points): Suppose V is a finite dimensional real vector space, and e1, . . . , en is a basis

for V . Show that the linear maps fi : V → R, i = 1, . . . , n, defined by fi(
∑n

j=1 ajej) = ai
give a basis (called the dual basis) of V ∗ = L(V,R).

Solution: First, the maps fi are indeed linear, and they are linearly independent for if∑n
i=1 cifi = 0, then for any j, 0 =

∑n
i=1 cifi(ej) = cj , so the linear combination is trivial.

On the other hand, if ` ∈ L(V,R), then

`(

n∑
j=1

ajej) =

n∑
j=1

aj`(ej) =

n∑
j=1

fj(

n∑
k=1

akek)`(ej) = (

n∑
j=1

`(ej)fj)(

n∑
k=1

akek),

so ` =
∑n

j=1 `(ej)fj is a linear combination of the fj , and thus the fj span V . Correspond-

ingly, f1, . . . , fn is a basis of V .

(b) (3 points): Suppose that A ∈ L(V, V ) is linear, V , etc., as above. Show that traceA =∑n
j=1 fj(Aej) is independent of the choice of the basis of V , and if A is symmetric, then

traceA is the sum of the eigenvalues of A, counted with multiplicity, i.e. if λ1, . . . , λk are

the distinct eigenvalues, then traceA =
∑k

j=1 λj dimN(A− λjI).

Note: fj(Aej) is the jj entry of the matrix of A in the basis e1, . . . , en, so the trace is the sum of the diagonal
entries of the matrix.

Solution: Consider a different basis e ′1, . . . , e
′
n of V , and write f ′1, . . . , f

′
n for the dual basis.

Thus, writing ej =
∑n

k=1 ckje
′
k, we have f ′i (ej) = f ′i (

∑n
k=1 ckje

′
k) = cij =

∑n
k=1 cikfk(ej);

since this is true for all j, thus for all linear combinations of the ej , we have f ′i =
∑n

k=1 cikfk.

Thus, fj(Aej) = fj(A
∑n

k=1 ckje
′
k) =

∑n
k=1 ckjfj(Ae

′
k). Summing over j and interchanging

the two sums:
n∑
j=1

fj(Aej) =
n∑
k=1

n∑
j=1

ckjfj(Ae
′
k) =

n∑
k=1

f ′k(Ae
′
k).

Since the two sides are exactly the expression of the trace in two arbitrary bases, we conclude

that the trace is defined independently of the choice of basis. If A is symmetric, there is an

orthonormal basis consisting of eigenvectors of A, say e1, . . . , en with Aej = µjej . Then by

definition of the trace, traceA =
∑n

j=1 fj(µjej) =
∑n

j=1 µj , as claimed.
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7 (6 points extra credit only): Suppose amn ≥ 0 for m,n ≥ 1 integer. Show that the

set {
∑

(m,n)∈B amn, B ⊂ N+ × N+, B finite} is bounded above if and only if for each m,∑∞
n=1 amn converges and {

∑M
m=1

∑∞
n=1 amn : M ≥ 1} is bounded above. Show moreover

that in this case

sup
{ ∑

(m,n)∈B

amn, B ⊂ N+ × N+, B finite
}

=
∞∑
m=1

∞∑
n=1

amn,

where both sums on the right hand side converge, and

∞∑
m=1

∞∑
n=1

amn =
∞∑
n=1

∞∑
m=1

amn.

Solution: Suppose first that for each m,
∑∞

n=1 amn converges and {
∑M

m=1

∑∞
n=1 amn :

M ≥ 1} is bounded above. Let B be a finite set, and let M = max{m : ∃n s.t. (m,n) ∈ B}.
Then for each m, {n : (m,n) ∈ B} is a finite set, and (as shown in lecture, or simply because

it is bounded by a partial sum which in turn is bounded by the limit of the series since the

terms are non-negative)
∑
{n: (m,n)∈B} amn ≤

∑∞
n=1 amn, and thus summing over m,

∑
(m,n)∈B

amn =

M∑
m=1

∑
{n: (m,n)∈B}

amn ≤
M∑
m=1

∞∑
n=1

amn ≤ sup{
M̃∑
m=1

∞∑
n=1

amn : M̃ ≥ 1},

giving the claimed boundedness of the set of finite sums, and more over that the sup of the

right hand side (set of finite sum of sums in n) is ≥ the sup if the left hand side (set of

finite sums).

Conversely, suppose that {
∑

(m,n)∈B amn, B ⊂ N+×N+, B finite} is bounded above. Then

for each m, the set of partial sums
∑N

n=1 amn is bounded above since this is a special case

of the finite sums, with B = {(m,n) : n ≤ N}, and thus,
∑∞

n=1 amn converges (a series

with non-negative terms converges if and only if the set of partial sums is bounded above).

Now, for any ε > 0 and any m there is Nm such that |
∑∞

n=1 amn −
∑Nm

n=1 amn| < 2−mε by

the definition of convergence. Thus, taking a finite sum in m:

|
M∑
m=1

∞∑
n=1

amn −
M∑
m=1

Nm∑
n=1

amn| ≤
M∑
m=1

|
∞∑
n=1

amn −
Nm∑
n=1

amn| ≤
M∑
m=1

ε2−m = ε2−1
1− 2−m

1− 2−1
≤ ε.

ButB = {(m,n) : m ≤M, n ≤ Nm} is a finite set, and
∑M

m=1

∑Nm
n=1 amn =

∑
{(m,n)∈B} amn,

thus we deduce that

M∑
m=1

∞∑
n=1

amn ≤
∑

{(m,n)∈B}

amn + ε ≤ ε+ sup{
∑

(m,n)∈B̃

amn, B̃ ⊂ N+ × N+, B̃ finite},

so the set of
∑M

m=1

∑∞
n=1 amn is bounded above, procing the claimed equivalence of bound-

edness, and moreover that for any ε > 0,

sup{
M∑
m=1

∞∑
n=1

amn : M ≥ 1} ≤ ε+ sup{
∑

(m,n)∈B

amn, B ⊂ N+ × N+, B finite}.
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Since ε > 0 is arbitrary, we have sup{
∑M

m=1

∑∞
n=1 amn : M ≥ 1} ≤ sup{

∑
(m,n)∈B amn, B ⊂

N+ × N+, B finite}.

Combining these two results, we have, when either of the equivalent conditions hold,

sup{
∑

(m,n)∈B

amn, B ⊂ N+ × N+, B finite} = sup{
M∑
m=1

∞∑
n=1

amn : M ≥ 1}.

But as
∑∞

n=1 amn ≥ 0 for all m, as proved in lecture/homework,
∑∞

m=1

∑∞
n=1 amn =

sup{
∑M

m=1

∑∞
n=1 amn : M ≥ 1}, so

sup
{ ∑

(m,n)∈B

amn, B ⊂ N+ × N+, B finite
}

=
∞∑
m=1

∞∑
n=1

amn.

Finally, notice that the role of m and n is interchangeable (e.g. define bnm = amn; the set of

finite sums is unchanged under this switch, while the iterated sums reverse order), we have

sup
{ ∑

(m,n)∈B

amn, B ⊂ N+ × N+, B finite
}

=

∞∑
n=1

∞∑
m=1

amn.

Combining these two statements, we deduce that

∞∑
m=1

∞∑
n=1

amn =
∞∑
n=1

∞∑
m=1

amn,

as claimed.
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