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1(a) (3 points): Find an orthonormal basis for the subspace of R4 spanned by the vectors

(1, 0, 2, 0)T, (1, 0, 0, 3)T, (0, 2, 0, 1)T, and write down an explicit formula (involving numbers

and matrix operations only) for the matrix of the orthogonal projection to this subspace

(but you do not need to compute it).

Solution: We apply the Gram-Schmidt algorithm. Since the first and last vectors are

already orthogonal, reorder them as v1 = (1, 0, 2, 0)T, v2 = (0, 2, 0, 1)T, v3 = (1, 0, 0, 3)T to

simplify the calculation. Then v1 and v2 are orthogonal, so we only need to make them unit

length, i.e. replace them by w1 = 1√
5
v1 and w2 = 1√

5
v2. Finally, we need to replace v3 by

its projection to the orthocomplement of Span{w1, w2}, and make the result unit length by

dividing by its length. The first step gives

v3−(w1 ·v3)w1−(w2 ·v3)w2 = (1, 0, 0, 3)T− 1

5
(1, 0, 2, 0)T− 3

5
(0, 2, 0, 1)T = (

4

5
,−6

5
,−2

5
,
12

5
)T;

the length of this vector is 1
5

√
16 + 36 + 4 + 144 = 1

5

√
200 = 2

√
2, so we get

w1 = (
1√
5
, 0,

2√
5
, 0)T, w2 = (0,

2√
5
, 0,

1√
5

)T, w3 = (
2

5
√

2
,− 3

5
√

2
,− 1

5
√

2
,

6

5
√

2
)T.

The orthogonal projection to the span of w1, w2, w3 of a vector v is

Pv = (v · w1)w1 + (v · w2)w2 + (v · w3)w3 =

3∑
j=1

wj(w
T
j v) = (

3∑
j=1

wjw
T
j )v

so the matrix is

3∑
j=1

wjw
T
j =(

1√
5
, 0,

2√
5
, 0)T(

1√
5
, 0,

2√
5
, 0) + (0,

2√
5
, 0,

1√
5

)T(0,
2√
5
, 0,

1√
5

)

+ (
2

5
√

2
,− 3

5
√

2
,− 1

5
√

2
,

6

5
√

2
)T(

2

5
√

2
,− 3

5
√

2
,− 1

5
√

2
,

6

5
√

2
).

(b) (2 points) Suppose A is an m × n matrix. Prove that the dimensions of C(A) and

C(AT) are the same.

Solution: Since N(A)⊥ = C(AT), with both being subspaces of Rn, we have dimC(AT) =

n− dimN(A). On the other hand, by the rank nullity theorem dimN(A) + dimC(A) = n

since A represents a linear operator Rn → Rm. Thus, n − dimN(A) = dimC(A), so

dimC(A) = dimC(AT).
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2(a) (4 points): For (x, y, z) ∈ R3, let f(x, y, z) = 16
3 x

2 + z and let S = {(x, y, z) ∈ R3 :

x2 + y4 + z6 = 1}. (i) Show that f |S attains a maximum and a minimum value. (ii) Find a

point where each of these is attained.

Solution: (i) If (x, y, z) ∈ S, then x2 + y4 + z6 = 1 shows that x2, y4, z6 ≤ 1 since all

summands are non-negative. Thus, |x|, |y|, |z| ≤ 1, so S is bounded. On the other hand,

the map g(x, y, z) = x2 + y4 + z6 − 1 defined on R3 is C∞, so in particular continuous,

so g−1({0}) = S is closed since {0} ⊂ R is closed. Correspondingly S is compact (as it is

closed and bounded), so any continuous function, such as f |S , attains its maximum and

minimum on S. (ii) We have g is C∞ and Dg(x, y, z) = (2x, 4y3, 6z5), so the vanishing

of Dg means x = y = z = 0, and thus Dg does not vanish on S. Correspondingly, by

the implicit function theorem, S is a C∞ submanifold of R3. Further, any critical points

p of f |S , which includes all local maxima and minima, satisfy that Df(p) = λDg(p) for

some λ ∈ R by the Lagrange multiplier theorem. Since Df(x, y, z) = (323 x, 0, 1), this

means that 32
3 x = 2λx, 0 = 4λy3, 1 = 6λz5. The last of these shows λ 6= 0, so from the

second of these y = 0, and from the first either x = 0 or λ = 16
3 . If x = 0, we get (as

y = 0), z = ±1; if x 6= 0 then 1 = 32z5, so z = 1
2 , and thus x = ±

√
1− 1

64 = ±
√
63
8 .

So the critical points are (0, 0, 1), (0, 0,−1), (
√
63
8 , 0, 12) and (−

√
63
8 , 0, 12). The maxima and

minima must be among these points; and f takes the values f(0, 0, 1) = 1, f(0, 0,−1) = −1,

f(
√
63
8 , 0, 12) = f(−

√
63
8 , 0, 12) = 16·63

3·64 + 1
2 = 21

4 + 1
2 > 1. Thus, the maximum is attained at

(±
√
63
8 , 0, 12) and the minimum at (0, 0,−1).

(b) (3 points): Find the determinant and the inverse of the matrix

A =

3 6 −9

0 2 4

0 0 1

 .

Solution: Since the matrix is upper triangular, its determinant is the product of its diagonal

entries, i.e. 6. As for the inverse,3 6 −9

0 2 4

0 0 1

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1

 r1 7→ 1
3r1

r2 7→ 1
2r2

1 2 −3

0 1 2

0 0 1

∣∣∣∣∣∣
1
3 0 0

0 1
2 0

0 0 1

 r1 7→ r1 + 3r3
r2 7→ r2 − 2r3

1 2 0

0 1 0

0 0 1

∣∣∣∣∣∣
1
3 0 3

0 1
2 −2

0 0 1


r1 7→ r1 − 2r2

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
1
3 −1 7

0 1
2 −2

0 0 1



so the inverse is

1
3 −1 7

0 1
2 −2

0 0 1

.
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3(a) (3 points): Suppose U ⊂ Rn is open, x0 ∈ U . (i) State the definition of a map

f : U → Rm being differentiable at x0. (ii) Show that if f : U → Rm is differentiable at x0
then it is continuous at x0.

Solution: f is differentiable at x0 with derivative A = (Df)(x0), a linear map A : Rn →
Rm, if for all ε > 0 there is δ > 0 such that Bδ(x0) ⊂ U and such that ‖x− x0‖ < δ implies

‖f(x)− f(x0)−A(x− x0)‖ ≤ ε‖x− x0‖.

If f is differentiable at x0 with derivative A, then given any ε̃ > 0 there is δ̃ > 0 such that

Bδ̃(x0) ⊂ U and such that ‖x− x0‖ < δ̃ implies ‖f(x) − f(x0) − A(x− x0)‖ ≤ ε̃‖x− x0‖.
Thus, for |x− x0‖ < δ̃,

‖fx)−f(x0)‖ ≤ ‖f(x)−f(x0)−A(x−x0)‖+‖A(x−x0)‖ ≤ ε̃‖x−x0‖+‖A‖‖x−x0‖ = (‖A‖+ε̃)‖x−x0‖.

Now, use this with ε̃ = 1 to conclude that |x − x0‖ < δ̃ implies ‖f(x) − f(x0)‖ ≤ (‖A‖ +

1)‖x − x0‖. For any specified ε > 0, the right hand side will be < ε if ‖x − x0‖ < ε
‖A‖+1 ;

since we needed in addition that ‖x − x0‖ < δ̃ to get this inequality in the first place, we

conclude that f is coninuous at x0 by taking, for given ε > 0, δ = min(δ̃, ε
‖A‖+1).

3(b) (4 points): Show the intermediate value theorem: if f : [a, b] → R is continuous,

f(a) = α, f(b) = β, α < c < β then there exists x ∈ (a, b) such that f(x) = c.

Hint: Consider inf{z ∈ [a, b] : f(z) > c}.

Solution: As suggested by the hint, let x = inf S, S = {z ∈ [a, b] : f(z) > c}. Note that

S is non-empty, as b is in it, and it is bounded below since a is a lower bound, so this inf

exists. Further, x > a since by the continuity of f at a and as c > α so ε = c−α > 0 there

exists δ > 0 such that z < a+δ, z ∈ [a, b], implies f(z) < f(a)+ε = c, i.e. [a, a+δ)∩S = ∅,
and thus x ≥ a + δ (since any element of [a, a + δ) is a lower bound for S). Since f

is continuous, it is continuous at x in particular, so if xn is any sequence in [a, b] with

limxn = x then lim f(xn) = f(x) as continuity implies sequential continuity. Since x > a,

we can take a sequence xn ∈ [a, b] with xn < x for all n and such that xn → x, e.g. take

xn = max(a, x − 1/n). Then xn /∈ S (since x is a lower bound for S), so f(xn) ≤ c, so

we conclude that f(x) = lim f(xn) ≤ c as well. On the other hand, since x = inf S, there

exists a sequence {xn}∞n=1 in S converging to x, so f(xn) > c, and so f(x) = lim f(xn) ≥ c.
Combining these two, we deduce that f(x) = c, completing the proof.
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4(a) (3 points): Let A = (aij) be an n × n symmetric matrix. Prove that the quadratic

form A(x) =
∑n

i,j=1 aijxixj is positive definite ⇐⇒ all the eigenvalues of A are positive.

Hint: Spectral Theorem.

Solution: By the spectral theorem there is an orthonormal basis v1, . . . , vn of Rn consisting

of eigenvectors of A with eigenvalue λj : Avj = λjvj . Now, the quadratic form is A(x) =

x ·Ax. Writing x =
∑n

j=1 cjvj (which can be done by the basis property), we have

A(x) = (
n∑
j=1

cjvj) ·A(
n∑
k=1

ckvk) =
n∑

j,k=1

cjckvj ·Avk =
n∑

j,k=1

cjckλkvj · vk =
n∑
j=1

λjc
2
j .

Now, A is positive definite means exactly that A(x) > 0 if x 6= 0, which in turn is equivalent

to
∑n

j=1 λjc
2
j > 0 if (c1, . . . , cn) 6= 0, i.e. not all cj vanish. This immediately gives that if all

eigenvalues λj of A are positive then A is positive definite (since λjc
2
j ≥ 0, and at least for

one j it is > 0, so the sum is > 0). Conversely, if A is not positive definite, then there is at

least one k such that λk ≤ 0. Taking ck = 1, cj = 0 if j 6= k, we have
∑n

j=1 λjc
2
j = λk ≤ 0,

so A is not positive definite, completing the proof.

(b) (3 points): Find all critical points of the map f : R3 → R defined by f(x, y, z) =
1
5(x5 + y5) + 1

3z
3 − x− y − 4z, and discuss whether these points are local maxima/minima

for f . Justify all claims with proofs, possibly using theorems from lecture.

Solution: Since Df(x, y, z) = (x4−1, y4−1, z2−4), the critical points of f satisfy x4−1 = 0,

y4 − 1 = 0, z2 = 4; this gives x = ±1, y = ±1, z = ±2. Further, the Hessian is4x3 0 0

0 4y3 0

0 0 2z

 ,

so it has eigenvalues given by the diagonal entries, which are ±4, ±4 and ±4 at these critical

points. In order to have a local maximum one must have eigenvalues ≤ 0, and one definitely

does have a local maximum if the eigenvalues are < 0; analogously with local minima. Thus,

the only possible local maximum is (−1,−1,−2), and this is indeed a local maximum, while

the only possible local minimum is (1, 1, 2), which indeed is a local minimum.
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5(a) (3 points): Suppose that {Mn}∞n=1 is a sequence with Mn ≥ 0 for all n, and
∑∞

n=1Mn

converges. Show that if {xn}∞n=1 is a sequence in a complete normed vector space (V, ‖.‖)
(if you wish, you may take V = Rm with the standard norm) and ‖xn‖ ≤Mn for all n, then∑∞

n=1 xn converges in V , i.e. limk→∞
∑k

n=1 xn exists. (This is the Weierstrass M -test.)

Solution: Since ‖xn‖ ≤Mn for all n,
∑∞

n=1 ‖xn‖ converges (in R) since it is a series with

non-negative terms, and its partial sums are bounded by those of
∑∞

n=1Mn, which are in

turn bounded by their limit,
∑∞

n=1Mn.

Now, we claim that the partial sums sn =
∑n

k=1 xk form a Cauchy sequence in V . If we

show this, the completeness of V implies that they converge, i.e. that
∑∞

k=1 xk converges,

completing the proof.

But if n > m (with n < m following by relabelling, and n = m being automatic),

‖sn − sm‖ = ‖
n∑

k=m+1

xk‖ ≤
n∑

k=m+1

‖xk‖.

On the other hand, if σn =
∑n

k=1 ‖xk‖, then σn − σm =
∑n

k=m+1 ‖xk‖ as well. Since

{σn}∞n=1 converges, it is Cauchy, so given ε > 0 there is N such that n,m ≥ N implies

|σn−σm| < ε. Thus, for n,m ≥ N , ‖sn−sm‖ ≤ |σn−σm| < ε, proving the claimed Cauchy

property, and thus completing the proof.

(b) (4 points): Suppose that A : Rm → Rm linear satisfies ‖A‖ < 1. Show that (I−A)−1 =

I +
∑∞

n=1A
n. (This includes showing that the right hand side converges!)

Hint: Recall that ‖AB‖ ≤ ‖A‖‖B‖.

Solution: As hinted, induction shows that ‖An‖ ≤ ‖A‖n. So considering the series∑∞
n=1A

n as a series in the normed vector space Rm2
, which is complete, part (a) shows that

the series converges provided we find Mn such that ‖An‖ ≤ Mn and such that
∑∞

n=1Mn

converges; the first line of the proof shows that if we take Mn = ‖A‖n, we have ‖An‖ ≤Mn;

and as ‖A‖ < 1,
∑∞

n=1Mn converges since it is a geometric series with common ratio

‖A‖ < 1. Correspondingly,
∑∞

n=1A
n converges.

Now, (I − A)(I +
∑N

n=1A
n) = I − AN+1, and ‖AN+1‖ ≤ ‖A‖N+1, which tends to 0 as

N → ∞ since ‖A‖ < 1, so (I − A)(I +
∑N

n=1A
n) → I. Since matrix multiplication

is a continuous, thus sequentially continuous, map, i.e. BCn → BC if Cn → C, we have

(I−A)(I+
∑N

n=1A
n)→ (I−A)(I+

∑∞
n=1A

n). Combining these two, (I−A)(I+
∑∞

n=1A
n) =

I, i.e. I +
∑∞

n=1A
n is a right inverse for I −A. A similar computation shows that it is also

a left inverse, completing the proof.
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6(a) (3 points): Let I be the identity operator on Rn. Show that if A : Rn → Rn is

linear then the statements ‘AB = I for some B : Rn → Rn linear’ and ‘CA = I for some

C : Rn → Rn linear’ are equivalent, and necessarily B = C in either case.

Solution: Notice that AB = I for some B : Rn → Rn linear means that A is surjective:

given any x ∈ Rn, x = A(Bx). On the other hand, CA = I for some C : Rn → Rn linear

means that A is injective, for if Ax = 0 then x = Ix = CAx = 0. Now, for a linear

operator A between finite dimensional vector spaces of the same dimension, injectivity

and surjectivity are equivalent by the rank-nullity theorem, i.e. either implies bijectivity,

and thus the invertibility of A, with the inverse being a linear map. Thus, under either

assumption, A is invertible, with inverse A−1. Since an invertible operator has a unique

left inverse, namely A−1, and similarly for a right inverse, we conclude that A−1 = B, resp.

A−1 = C in the two cases, and thus in the first case B is the unique left inverse as well so

CA = I holds only for C = B, with the argument in the second case being similar.

(b) (5 points extra credit only): Consider the set O(n) of n × n matrices A with real

entries such that ATA = I. (i) Show that O(n) is a group under matrix multiplication. (ii)

Show that there is an open set V in Rn2
containing I such that O(n)∩V is a C1 submanifold

of Rn2
. What is its dimension?

Note for (ii): In fact, O(n) is a C1, and indeed C∞, submanifold of Rn2

, but you do not need to show it.

Hint for (i): Recall that matrix multiplication is associative, and I is a unit for this, so you need to
show that O(n) is closed under multiplication, inverses and contains I. Hint for (ii): Consider the map
A 7→ {(ATA)ij : i ≤ j} into the above diagonal (including diagonal) entries of the symmetric matrix ATA.

Solution: (i) Note first that if ATA = I, then by part (a) A is invertible, so O(n) ⊂ GL(n),

and the latter is a group under matrix multiplication. So it suffices to show that O(n) is

closed under the group operations and contains I; the latter is immediate, and ifA,B ∈ O(n)

then (AB)T(AB) = BTATAB = BTB = I so AB ∈ O(n), and AAT = I (as AT = A−1

as shown in (a)), so (AT)TAT = I, so AT ∈ O(n), completing the proof. (ii) Consider the

map f : Rn
2 → Rn(n+1)/2, with the latter identified with the above diagonal elements of

a symmetric matrix, given by f(A)ij = (ATA − I)ij , i ≤ j. Notice that as ATA − I is

symmetric, f(A) = 0 if and only if ATA − I = 0, i.e. O(n) = f−1(0). Let us compute

(Df)(I) : Rn2 → Rn(n+1)/2. If we show that this is surjective, i.e. has rank n(n + 1)/2,

the implicit function theorem guarantees that there is an open set V in Rn2
containing I

such that O(n)∩ V is a C1 submanifold of Rn2
of dimension n2− n(n+ 1)/2 = n(n− 1)/2.

Now, since we are interested in A near I, write A = I + B, B = A − I. Then ATA − I =

(I +BT)(I +B)− I = BT +B +BTB. Notice that ‖BTB‖ ≤ ‖B‖2, so for the purposes of

computing (Df)(I), BTB can be dropped, and we conclude that ((Df)(I)B)ij = (BT+B)ij ,

i ≤ j. But this is certainly a surjective map: taking B to have ij entry 1 and every other

entry 0 gives ((Df)(I)B)ij = 1 and every other entry k` with k ≤ ` vanish, so the range of

(Df)(I) includes the standard basis of Rn(n+1)/2, completing the proof of surjectivity, and

thus via the implicit function theorem, the proof.
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