Mathematics Department Stanford University
Math 51H Final Examination, December 9, 2013

3 Hours

Solutions

Unless otherwise indicated, you can use results
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1 (a) (2 points): Calculate the determinant of

11 12 13 426

2001 2002 2003 421
2 1 0 —419
101 101 102 2000

No calculators: Clearly state all column/row operations.

Solution:

11 12 13 426 11 1 2 426
2001 2002 2003 421 <02|—>02—01> 2001 1 2 421

2 1 0 —419 c3 > c3—C1 2 -1 -2 —-419

101 101 102 2000 101 0 1 2000
11 1 2 426
T =T — T 1990 0 O -5
r3 =73 —1r] 13 0 0 7
101 0 1 2000

Now none of the above operations changes the determinant so we can just compute the determinant
of the last matrix above, and expanding this down the second column gives

1990 0 -5 1090 5
—det| 13 0 7 :+det< 13 7> =7 x 1990 + 5 x 13 = 13,930 + 65 = 13,995
101 1 2000

(b) (3 points): Find the matrix of the orthogonal projection onto the plane V = {(z,y,z) € R3:
20 +y — 2z =0}

Hint: Start by finding the orthogonal projection onto the (1-dimensional) normal space V.

T 2
The given plane Vis |y | - | 1 = 0, i.e. the plane is the set of all points orthogonal to
z —1
2 2
the vector 1 |, and so V't is the 1-dimensional space spanned by the unit vector % 1],
-1 -1
T

and the othogonal projection onto the normal space is the map taking the vector | y | to the

z
T 2 2 2
vector % yl-| 1 1 | which is the linear transformation with matrix % 1 ]1(2,1,-1) =
z —1 -1 -1
4 2 =2 2 _92
% 2 1 —1 ], and the orthogonal projection onto V has matrix I — this matrix; i.e. % -2 5
-2 -1 1 2 1



2. (a) (2 points): If u: R” — Ris C! and if v : R — R" is also C, prove that the velocity vector

I(t) of the curve I'(t) = (UZY(Q)D is orthogonal to the vector <Vu('y1(t))> for each t € R.

Solution: By the chain rule & (u(v(t))) = > i1 Dju(y(®)vj () = () - Vu(y(t)), so T'(t) =

7'(t) i (Vu(y(@)\ _ y Y e
<’y’(t)-Vu(fy(t))>’and hence I'(t) ( 1 >—V (4(8)) - (1) = Vu(y(1) - 7'(t) = 0.

(b) (3 points) Let ¢® be defined as usual by e® = 3.°° £ for 2 € R. Prove:

n=0 n!

o\ 1. —p — 2

(i) limg_0 || "Pe~1/*" = 0 for each p > 0.

Note: You can of course assume, without giving the proof, the standard property e*** = e“e” (so in particular
e =1/e").

(ii) If f(z) = e~/*" for 2 # 0 and f(0) = 0, find the Taylor series 3222 ) £ gn of f.

Hint for (ii): Start by checking (by induction on n) that for = # 0 each derivative f™ (z) has the form pn(l/a:)efl/ﬁ,
where p,, is a polynomial.

Solution (i): Observe first that, for y > 0, e¥ = ZZO:O% > 3;—? for each ¢ = 1,2,..., so in
-1

particular e=1/%* < 1224 for any z # 0 and any ¢ = 1,2, ..., and hence |z|7Pe=? < g!|lz|?4P — 0

as x — 0 if we take ¢ > p/2.

Solution (ii): Let P, be the proposition that the hint is true, n = 1,2,.... By the chain

rule f/(z) = 223 Y/%" for x # 0, so P| is true with pi(t) = 2t%. If P, is true then we
have f()(z) = pn(l/x)e_l/‘l”2 for x # 0, and by the product rule for differentiation we get
FO) () = (207 3pp(1/2) — 2~ 2p,(1/2))e Y™ s0 Poyq is true with pui1(t) = 263p,(t) — t2p, ().
Now by (i) all derivatives £ (0) = 0 because (i) implies £+ (0) = lim,_,0 2~ (f™ (z)— f™(0)) =
limg 02 'p,(1/2)e /%" = 0 (and the limit does exist by induction on n starting at n = 0). Hence
the Taylor series is 0 (the identically zero function).

3 (a) (2 points): Define the term “open set” in R", and prove that the intersection U NV of 2
open sets U, V is again an open set.

Solution: Let (zg,y0) € U NV. Then since (xg,yp) € U there is 6; > 0 such that the ball
Bs, (x0,y0) C U and similarly there is a ball By, (zo,y0) C V for some d2 > 0, and so taking
d = min{dy, d2} (> 0) we have Bs(zo,yo) C both U and V; i.e. Bs(xo,y0) CUNV.

3 (b) (3 points): If o : R” — R and f : R” — R are both continuous, and if S = {z € R" :
©(z) = 0} is bounded, prove there is a point @ € S such that f(z) < f(a) Vz € S.

Solution: We claim that S is closed. Let y be a limit point of S, so there is a sequence zp — y
with x5 € S for each k. Then ¢(zx) = 0 and by continuity of ¢ we have ¢(y) = limg_,o ¢(zr) = 0,
so y € S and we have shown that S is closed. Thus S is a closed bounded set (i.e. a compact set),
and hence by a theorem from lecture f|S attains its maximum value somewhere on S; that is, there
is a point a € S such that f(z) < f(a) for each z € S.



4(a) (3 points): State (without proof) the Spectral Theorem for a real symmetric n x n matrix A,
and use it to prove that for a given quadratic form H(z) = szzl a;jr;xj (aij = aj; real) there is a
change of coordinates y = QTz with @Q orthogonal (i.e. QTQ = QQ” = I) such that the quadratic
form H(z) is transformed to an expression of the form >%_, )\jy]z for suitable real Ai, ..., \,.

Solution: The spectral theorem states that if A is a symmetric n X n matrix then there is an
othonormal basis v1, ..., v, for R"” such that for each j there is a real A\; with Av; = Ajv; (i.e. each
v; is an eigenvector of A).

Let @@ be the matrix with columns v1,...,v, and observe that the j’th column of A(Q is then
Av; = A\ju; and hence Q"(AQ) has entry v; - (Ajv;) in the ¢’th row and j’th column; i.e. \;d;;,
where 0;; = 1 if i = j and = 0 if i # j. That is QT AQ is the diagonal matrix with the eigenvalues
A1, - -+, Ap down the leading diagonal. Observe also that the entry of @QT@Q in the i’th row and j’th
column is v; - v; = dj;; that is Q"Q = I, so @ is indeed an orthogonal matrix.

The quadratic form Z” ajjrir; = 2T Az, and with y = Q"2 (ie. = Qy), this is y"QTAQy =
yT Dy, where D is the diagonal matrix with entries A1,..., A, down the leading diagonal, so in
terms of y the quadratic form is just Z?Zl )\jyjz as claimed.

(b) (2 points). Find the inverse of the matrix

13 -1
A=101 0
Solution: 0 0 2
1 3 —1]1 0 0 13 111 0 0\ry—r+r3 /1 3 01 0 &
01 01010 01 01[010 01 0010
00 200 1/rg—3r3\0 0 100 3 0010 0 %
rie—ri—3rp /1 0 01 =3 1
0100 1 0
1 -3 } 00 110 3
so the inverseis [0 1 O
0o 0 1

5(a) (2 points): Give the “(g,d) definition” of continuity of a function f : (a,b) — R at a point
¢ € (a,b), and using the definition prove that if f : (0,1) — R is continuous at a point ¢ € (0,1)
and if f(c) = 1 then there is § > 0 such that f(z) > 3 for all z € (¢ — 6, ¢ + ).

Solution: Definition: For each € > 0 there is a § € (0,min{¢,1 — ¢}) such that |z —¢| < § =

|f(x) = f(c)] <e. Thus f(c) —e < f(x) < f(c) +¢e whenever |x — ¢| < §, so in particular using this

with f(c) =1 and € = } we have that there is a § > 0 such that 3 < f(z) whenever |z — ¢| < 4.

5(b) (3 points): Prove that the function f(z,y) = 1 — 2z — y + 422 + 4y + 2y* + 3ry sin vy has

a critical point at (z,y) = (%, 0) and that f has a local minimum there.

Solution: The gradient V f(z,0) is (—2+8z, —1+4z)" =0 at = 1, so (z,y) = (3,0) is a critical

4 4

point as claimed. Now the Hessian at (z,y) = (,0) is 8 6 | = 8 35 | and hence the
4 448 4 3

Hessian quadratic form is 8y3 + (35/8)y3 + 8y1y2 > 4y3 + 4(y% + y3 + 2y1y2) = 49% + (y1 + y2)* > 0

for (y1,y2) # (0,0), so by the second derivative test f has a strict local min at (z,y) = (1,0). (We

proved generally that if a is a critical point f and if the Hessian of f at a is positive definite, then

the function has a strict local minimum at a.)



6 (a) (2 pomts) Find an orthonormal basis for the subspace of R* spanned by the vectors
U1 (17170 0) (0>1>170) y U3 = (0507171) .

Solution: It is better to use the order vi,ws,ve, because vi,v3 are already orthogonal, and so

the normalized vectors w; = %Ul,wg = %1}3, are already orthonormal, and the Gram-Schmidt

process requires only one further step w3 = ||va —w1 -vowt —wa - vows ||~ (Ve — w1 -Vows — w2 - Vows) =
10,1, 1,007 — (3, 3,3, P70, 1,1L,0)% — (3, 3,5, 1%) = (4, 3, 1, — )",
Thus the required orthonormal basis is (\f \/5,0 0)", (0, 0, -1 VL \})T (1,1 % —yr,

(b) (3 points): Find the set of all solutions of the inhomogeneous system Az = y where

—
—
NI

1 01 1 1 1
211 3 2 4
A=11 12 0 3 L I
001 -1 1 —1
(Give your answer as an affine space.)
Solution: Consider the augmented matrix
1 01 1 1] 1
2 1 1 3 2| 4
11 2 0 3 1
001 -1 1]-1

To compute the solution set, as in lecture we use elementary row operations on the augmented
matrix which reduce A to reduced row echelon form:

1 01 1 1 1 1 0 1 1 1| 1 1 0 1 1
21 1 3 20 4 ])rga—1r9—2r1]0 1 -1 1 0 2 01 -1 0
112 0 3 1) r3g—r3g—r; |0 1 1 =1 2| 0 |rg—rg—ra|0 O -2 2
001 -1 1]-1 00 1 -1 1]-1 00 1 -11
1 0 1 1 1 rr—ry—7rTrs3 1 0 0 2 0 2
01 -1 0f 2 |rg—mreg+r3]0 1 0 0 1] 1
r3 > 1r3/2 o0 1 -1 1] -1 001 -1 1] -1
ra—>ry—r3/2\0 0 0 0 0 O 000 0 0 O
Thus (z,y,z,u,v)" is a solution of Az =y <— z=u—-v—-—1lLy=—-v+1,2=-"2u+2 <

(z,y, z,u,0)" = (—2u, —v,u — v,u,v)" +(2,1,-1,0,0)" = u(-2,0,1,1,0)" +v(0,—-1,—1,0,1)T
(2,1,-1,0,0)7, where u,v are arbitrary real constants, so the solution set is the 2-dimensional
affine space span{(—2,0,1,1,0)",(0,—1,—1,0,1)"} + (2,1, —1,0,0)7.



7(a) (2 points): Find all eigenvalues and corresponding eigenvectors for the matrix A =

S O =
S = N
N = W

1-X 2 3
Solution: The eigenvalues are the roots of det 0 1-Xx 1 =0;ie (1-N)2(2-)) =
0 0 2-2A
i.e. eigenvalues are A = 1 (with multiplicity 2) and A = 2. If A = 1 the eigenvectors are the non-

0 2 3
zero solutions of the homogeneous linear system with matrix [ 0 0 1 | which has the null space
0 01

spanned by ejg; i.e. the set of all eigenvectors is just the set of all non-zero multiples of the vector
€1.-
For A\ = 2 the eigenvectors are the non-zero solutions of the homogeneous linear system with matrix
-1 2 3 1 0 -5
0 —1 1| which hasrref [0 1 —1|] and hence the null space is spanned by (5,1,1)7; i.e.

0 0 O 00 O
the set of all eigenvectors is just the set of all non-zero multiples of the vector (5,1,1).

7 (b) (3 points): Show that the system of two non-linear equations

2 )y +Tr =1

—y?)z+5y =1

(x
(a?

has a solution (z,y) with 2% + 32 < 1.

Hint: Define f(z,y) = (1(1 — (z? - ),%( — (2% — y?) )) and start by proving that f is a
contraction mapping D — D, where D {(z,y) - 2® + 9y < 1}

Solution: With f as in the hint we have || f(z,v)| < |1( —(@2=y?)y)|[+[2(1— (22 —y?)z)| < 2
1, s0 in fact f maps the closed disc D into the open disc D. Also the derivative matrix D f(z, y) (with
columns D, f*(z,y) and D, f(z,y)) is ((_351;%2)/5 - %:j;g )/7> and so | Df(z,y)|?* =

22y (1/49+1/25)+ (3y? —22)? 49+ (y? —322)? /25 < 4/49+4/25+9/49+9/25 = 13/49+13/25 < 1
for a2 + 2 < 1, so since (from lecture) | f(z,y) — f(a,b)| < maxe pyep [DFE nll(zy) — (a,0)]
for each (z,y), (a,b) € D, we have shown that f is a contraction. The contraction mapping theorem
then tells us that f has a fixed point in D and a fixed point (z,y) of f clearly satisfies the given
equations. Notice that the fixed point is actually in the open disk z? + 3% < 1 because we proved
above that f maps D into the open disk.
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8(a) (2 points): Let A be an n x n real matrix (a;;). Define the adjoint matrix adj A and give
the proof that Aadj A = (det A)I.

Solution: adj A is the n x n matrix which has (—1)"*7 det A;; in the i-th row and j-th column,
where A;; is the (n — 1) x (n — 1) matrix obtained by deleting the i-th row and j-th column of A.

From lecture we have the formulae for the expansion of det A along the j-th row of A:
(%) Shjap((—1)Y 1 det Ajy) =det A, j=1,...,n,

and hence
Sroraa (1) det Ajp) =0 £ #

because by (%) it is the expression for determinant of the matrix A which is the same as A except
that it has row £ of A in both the ¢-th and the j-th row. Thus

Zzzlaik((—l)jJrk det Ajk) = detA5ij, 1,7=1,...,n.

On the other hand the expression on the left of the previous identity is exactly the element which
appears in the i-th row and j-th column of Aadj A and the expression on the right is exactly the
element which appears in the i-th row and j-th column of det A , so we have proved AadjA =
det AT.

8(b) (3 points): Show that S = {(x,y,2) € R? : 22 +4y?+ 22 = 1} is a 2-dimensional C'! manifold
and find a point @ € S at which the function f(z,y,2) = zyz takes its maximum.

Note: You should begin by discussing the existence of such a point a € S.

Solution: Let g(x,y,2) = 22 +4y?> + 22 — 1,50 S = {(x,9,2) € R®: g(x,y,2z) = 0}, and note that
Dg(x,y, z) = (2z,8y,2y) # (0,0,0) on S, hence by a result of lecture (the corollary of the implicit
function theorem) S is a 2 dimensional C! manifold. S is clearly closed and bounded (indeed
(v,y,2) € S = 22 +y? + 22 < 22 + 49> + 22 < 1 and of course any limit point of S is evidently
in S by continuity of g). Thus f|S attains its maximum (since a continuous function on a closed
bounded set attains its maximum).

According to the Lagrange multiplier result, at any critical point of f|S (and in particular at any
local max/min of f|S) we must have V f(z,y, 2) = AVg(z,y, z), where as above g = 22 +4y%+22—1.
Thus at any local max/min of f|S we must have (yz,zz,zy) = A(2z,8y,2z2); i.e. we have the 3
equations yz = 2Ax,xz = 8\y,xy = 2Az and by multiplying the first by z, the second by ¥, and
the third by z we get either A = 0 or 22 = 4y% = 22. But A = 0 implies that yz = 2z = 2y = 0
which implies that zyz = 0 so this cannot happen at a maximum of zyz because there are values
where zyz is positive on S and hence the maximum (which exists by the discussion above) must

be positive. Thus at a max we have 22 = 4y?> = 22, which, since z? + 49> + 22 = 1, gives
22 =4y =22 = %, and the value of f at any such point is :I:ﬁ so the maximum is ﬁ and is

attained at (z,y,2) = (%, ﬁ, %) (and also at several other points, e.g. (z,y,2) = (\_/—%, %, %))



