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1 (a) (2 points): Calculate the determinant of
11 12 13 426

2001 2002 2003 421

2 1 0 −419

101 101 102 2000


No calculators: Clearly state all column/row operations.

Solution: 
11 12 13 426

2001 2002 2003 421

2 1 0 −419

101 101 102 2000

(c2 7→ c2 − c1
c3 7→ c3 − c1

)
11 1 2 426

2001 1 2 421

2 −1 −2 −419

101 0 1 2000


(
r2 7→ r2 − r1
r3 7→ r3 − r1

)
11 1 2 426

1990 0 0 −5

13 0 0 7

101 0 1 2000


Now none of the above operations changes the determinant so we can just compute the determinant

of the last matrix above, and expanding this down the second column gives

−det

1990 0 −5

13 0 7

101 1 2000

 = + det

(
1990 −5

13 7

)
= 7× 1990 + 5× 13 = 13, 930 + 65 = 13, 995.

(b) (3 points): Find the matrix of the orthogonal projection onto the plane V = {(x, y, z) ∈ R3 :

2x+ y − z = 0}.

Hint: Start by finding the orthogonal projection onto the (1-dimensional) normal space V ⊥.

The given plane V is

xy
z

 ·
 2

1

−1

 = 0, i.e. the plane is the set of all points orthogonal to

the vector

 2

1

−1

, and so V ⊥ is the 1-dimensional space spanned by the unit vector 1√
6

 2

1

−1

,

and the othogonal projection onto the normal space is the map taking the vector

xy
z

 to the

vector 1
6

xy
z

 ·
 2

1

−1

 2

1

−1

 which is the linear transformation with matrix 1
6

 2

1

−1

 (2, 1,−1) =

1
6

 4 2 −2

2 1 −1

−2 −1 1

, and the orthogonal projection onto V has matrix I− this matrix; i.e. 1
6

 2 −2 2

−2 5 1

2 1 5

 .

1



2. (a) (2 points): If u : Rn → R is C1 and if γ : R→ Rn is also C1, prove that the velocity vector

Γ ′(t) of the curve Γ(t) =

(
γ(t)

u(γ(t))

)
is orthogonal to the vector

(
∇u(γ(t))

−1

)
for each t ∈ R.

Solution: By the chain rule d
dt(u(γ(t))) =

∑n
j=1Dju(γ(t))γ ′j(t) = γ ′(t) · ∇u(γ(t)), so Γ ′(t) =(

γ ′(t)

γ ′(t) · ∇u(γ(t))

)
, and hence Γ ′(t) ·

(
∇u(γ(t))

−1

)
= ∇u(γ(t)) · γ ′(t)−∇u(γ(t)) · γ ′(t) = 0.

(b) (3 points) Let ex be defined as usual by ex =
∑∞

n=0
xn

n! for x ∈ R. Prove:

(i) limx→0 |x|−pe−1/x
2

= 0 for each p > 0.

Note: You can of course assume, without giving the proof, the standard property eu+v = euev (so in particular
e−u = 1/eu).

(ii) If f(x) = e−1/x
2

for x 6= 0 and f(0) = 0, find the Taylor series
∑∞

n=0
f (n)(0)
n! xn of f .

Hint for (ii): Start by checking (by induction on n) that for x 6= 0 each derivative f (n)(x) has the form pn(1/x)e
−1/x2

,
where pn is a polynomial.

Solution (i): Observe first that, for y > 0, ey =
∑∞

n=0
yn

n! ≥
yq

q! for each q = 1, 2, . . ., so in

particular e−1/x
2 ≤ q!x2q for any x 6= 0 and any q = 1, 2, . . ., and hence |x|−pe

−1

x2 ≤ q!|x|2q−p → 0

as x→ 0 if we take q > p/2.

Solution (ii): Let Pn be the proposition that the hint is true, n = 1, 2, . . .. By the chain

rule f ′(x) = 2x−3e−1/x
2

for x 6= 0, so P1 is true with p1(t) = 2t3. If Pn is true then we

have f (n)(x) = pn(1/x)e−1/x
2

for x 6= 0, and by the product rule for differentiation we get

f (n+1)(x) = (2x−3pn(1/x)− x−2p ′n(1/x))e−1/x
2
, so Pn+1 is true with pn+1(t) = 2t3pn(t)− t2p ′n(t).

Now by (i) all derivatives f (n)(0) = 0 because (i) implies f (n+1)(0) = limx→0 x
−1(f (n)(x)−f (n)(0)) =

limx→0 x
−1pn(1/x)e−1/x

2
= 0 (and the limit does exist by induction on n starting at n = 0). Hence

the Taylor series is 0 (the identically zero function).

3 (a) (2 points): Define the term “open set” in Rn, and prove that the intersection U ∩ V of 2

open sets U, V is again an open set.

Solution: Let (x0, y0) ∈ U ∩ V . Then since (x0, y0) ∈ U there is δ1 > 0 such that the ball

Bδ1(x0, y0) ⊂ U and similarly there is a ball Bδ2(x0, y0) ⊂ V for some δ2 > 0, and so taking

δ = min{δ1, δ2}(> 0) we have Bδ(x0, y0) ⊂ both U and V ; i.e. Bδ(x0, y0) ⊂ U ∩ V .

3 (b) (3 points): If ϕ : Rn → R and f : Rn → R are both continuous, and if S = {x ∈ Rn :

ϕ(x) = 0} is bounded, prove there is a point a ∈ S such that f(x) ≤ f(a) ∀x ∈ S.

Solution: We claim that S is closed. Let y be a limit point of S, so there is a sequence xk → y

with xk ∈ S for each k. Then ϕ(xk) = 0 and by continuity of ϕ we have ϕ(y) = limk→∞ ϕ(xk) = 0,

so y ∈ S and we have shown that S is closed. Thus S is a closed bounded set (i.e. a compact set),

and hence by a theorem from lecture f |S attains its maximum value somewhere on S; that is, there

is a point a ∈ S such that f(x) ≤ f(a) for each x ∈ S.
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4(a) (3 points): State (without proof) the Spectral Theorem for a real symmetric n×n matrix A,

and use it to prove that for a given quadratic form H(x) =
∑n

i,j=1 aijxixj (aij = aji real) there is a

change of coordinates y = QTx with Q orthogonal (i.e. QTQ = QQT = I) such that the quadratic

form H(x) is transformed to an expression of the form
∑n

j=1 λjy
2
j for suitable real λ1, . . . , λn.

Solution: The spectral theorem states that if A is a symmetric n × n matrix then there is an

othonormal basis v1, . . . , vn for Rn such that for each j there is a real λj with Avj = λjvj (i.e. each

vj is an eigenvector of A).

Let Q be the matrix with columns v1, . . . , vn and observe that the j’th column of AQ is then

Avj = λjvj and hence QT(AQ) has entry vi · (λjvj) in the i’th row and j’th column; i.e. λjδij ,

where δij = 1 if i = j and = 0 if i 6= j. That is QTAQ is the diagonal matrix with the eigenvalues

λ1, . . . , λn down the leading diagonal. Observe also that the entry of QTQ in the i’th row and j’th

column is vi · vj = δij ; that is QTQ = I, so Q is indeed an orthogonal matrix.

The quadratic form
∑

i,j aijxixj = xTAx, and with y = QTx (i.e. x = Qy), this is yTQTAQy =

yTDy, where D is the diagonal matrix with entries λ1, . . . , λn down the leading diagonal, so in

terms of y the quadratic form is just
∑n

j=1 λjy
2
j as claimed.

(b) (2 points). Find the inverse of the matrix

A =

1 3 −1

0 1 0

0 0 2

 .

Solution:1 3 −1

0 1 0

0 0 2

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1


r3 7→ 1

2r3

1 3 −1

0 1 0

0 0 1

∣∣∣∣∣∣
1 0 0

0 1 0

0 0 1
2

 r1 7→ r1 + r3
1 3 0

0 1 0

0 0 1

∣∣∣∣∣∣
1 0 1

2

0 1 0

0 0 1
2


r1 7→ r1 − 3r2

1 0 0

0 1 0

0 0 1

∣∣∣∣∣∣
1 −3 1

2

0 1 0

0 0 1
2


so the inverse is

1 −3 1
2

0 1 0

0 0 1
2


5(a) (2 points): Give the “(ε, δ) definition” of continuity of a function f : (a, b) → R at a point

c ∈ (a, b), and using the definition prove that if f : (0, 1) → R is continuous at a point c ∈ (0, 1)

and if f(c) = 1 then there is δ > 0 such that f(x) > 1
2 for all x ∈ (c− δ, c+ δ).

Solution: Definition: For each ε > 0 there is a δ ∈ (0,min{c, 1 − c}) such that |x − c| < δ ⇒
|f(x)− f(c)| < ε. Thus f(c)− ε < f(x) < f(c) + ε whenever |x− c| < δ, so in particular using this

with f(c) = 1 and ε = 1
2 we have that there is a δ > 0 such that 1

2 < f(x) whenever |x− c| < δ.

5(b) (3 points): Prove that the function f(x, y) = 1− 2x− y + 4x2 + 4xy + 2y2 + 3xy sinxy has

a critical point at (x, y) = (14 , 0) and that f has a local minimum there.

Solution: The gradient ∇f(x, 0) is (−2+8x,−1+4x)T = 0 at x = 1
4 , so (x, y) = (14 , 0) is a critical

point as claimed. Now the Hessian at (x, y) = (14 , 0) is

(
8 4

4 4 + 6
16

)
=

(
8 4

4 35
8

)
and hence the

Hessian quadratic form is 8y21 + (35/8)y22 + 8y1y2 ≥ 4y21 + 4(y21 + y22 + 2y1y2) = 4y21 + (y1 + y2)
2 > 0

for (y1, y2) 6= (0, 0), so by the second derivative test f has a strict local min at (x, y) = (14 , 0). (We

proved generally that if a is a critical point f and if the Hessian of f at a is positive definite, then

the function has a strict local minimum at a.)
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6 (a) (2 points): Find an orthonormal basis for the subspace of R4 spanned by the vectors

v1 = (1, 1, 0, 0)T, v2 = (0, 1, 1, 0)T, v3 = (0, 0, 1, 1)T.

Solution: It is better to use the order v1, v3, v2, because v1, v3 are already orthogonal, and so

the normalized vectors w1 = 1√
2
v1, w2 = 1√

2
v3, are already orthonormal, and the Gram-Schmidt

process requires only one further step w3 = ‖v2−w1 ·v2w1−w2 ·v2w2‖−1(v2−w1 ·v2w1−w2 ·v2w2) =

‖(0, 1, 1, 0)T − (12 ,
1
2 ,

1
2 ,

1
2)T‖−1((0, 1, 1, 0)T − (12 ,

1
2 ,

1
2 ,

1
2)T) = (−1

2 ,
1
2 ,

1
2 ,−

1
2)T.

Thus the required orthonormal basis is ( 1√
2
, 1√

2
, 0, 0)T, (0, 0, 1√

2
, 1√

2
)T, (−1

2 ,
1
2 ,

1
2 ,−

1
2)T.

(b) (3 points): Find the set of all solutions of the inhomogeneous system Ax = y where

A =


1 0 1 1 1

2 1 1 3 2

1 1 2 0 3

0 0 1 −1 1

 y =


1

4

1

−1


(Give your answer as an affine space.)

Solution: Consider the augmented matrix
1 0 1 1 1

2 1 1 3 2

1 1 2 0 3

0 0 1 −1 1

∣∣∣∣∣∣∣∣
1

4

1

−1


To compute the solution set, as in lecture we use elementary row operations on the augmented

matrix which reduce A to reduced row echelon form:
1 0 1 1 1

2 1 1 3 2

1 1 2 0 3

0 0 1 −1 1

∣∣∣∣∣∣∣∣
1

4

1

−1

 r2 7→ r2 − 2r1
r3 7→ r3 − r1


1 0 1 1 1

0 1 −1 1 0

0 1 1 −1 2

0 0 1 −1 1

∣∣∣∣∣∣∣∣
1

2

0

−1

 r3 7→ r3 − r2


1 0 1 1 1

0 1 −1 1 0

0 0 2 −2 2

0 0 1 −1 1

∣∣∣∣∣∣∣∣
1

2

−2

−1



r3 7→ r3/2

r4 7→ r4 − r3/2


1 0 1 1 1

0 1 −1 1 0

0 0 1 −1 1

0 0 0 0 0

∣∣∣∣∣∣∣∣
1

2

−1

0


r1 7→ r1 − r3
r2 7→ r2 + r3


1 0 0 2 0

0 1 0 0 1

0 0 1 −1 1

0 0 0 0 0

∣∣∣∣∣∣∣∣
2

1

−1

0


Thus (x, y, z, u, v)T is a solution of Ax = y ⇐⇒ z = u − v − 1, y = −v + 1, x = −2u + 2 ⇐⇒
(x, y, z, u, v)T = (−2u,−v, u − v, u, v)T + (2, 1,−1, 0, 0)T = u(−2, 0, 1, 1, 0)T + v(0,−1,−1, 0, 1)T +

(2, 1,−1, 0, 0)T , where u, v are arbitrary real constants, so the solution set is the 2-dimensional

affine space span{(−2, 0, 1, 1, 0)T, (0,−1,−1, 0, 1)T}+ (2, 1,−1, 0, 0)T .
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7(a) (2 points): Find all eigenvalues and corresponding eigenvectors for the matrixA =

1 2 3

0 1 1

0 0 2

.

Solution: The eigenvalues are the roots of det

1− λ 2 3

0 1− λ 1

0 0 2− λ

 = 0; i.e. (1−λ)2(2−λ) = 0;

i.e. eigenvalues are λ = 1 (with multiplicity 2) and λ = 2. If λ = 1 the eigenvectors are the non-

zero solutions of the homogeneous linear system with matrix

0 2 3

0 0 1

0 0 1

 which has the null space

spanned by e1; i.e. the set of all eigenvectors is just the set of all non-zero multiples of the vector

e1.

For λ = 2 the eigenvectors are the non-zero solutions of the homogeneous linear system with matrix−1 2 3

0 −1 1

0 0 0

 which has rref

1 0 −5

0 1 −1

0 0 0

 and hence the null space is spanned by (5, 1, 1)T; i.e.

the set of all eigenvectors is just the set of all non-zero multiples of the vector (5, 1, 1)T.

7 (b) (3 points): Show that the system of two non-linear equations

(x2 − y2)y + 7x = 1

(x2 − y2)x+ 5y = 1

has a solution (x, y) with x2 + y2 < 1.

Hint: Define f(x, y) =
(
1
7

(
1 − (x2 − y2)y

)
, 15
(
1 − (x2 − y2)x

))
and start by proving that f is a

contraction mapping D → D, where D = {(x, y) : x2 + y2 ≤ 1}.

Solution: With f as in the hint we have ‖f(x, y)‖ ≤ |17(1−(x2−y2)y)|+|15(1−(x2−y2)x)| ≤ 2
7+ 2

5 <

1, so in fact f maps the closed discD into the open disc D̆. Also the derivative matrixDf(x, y) (with

columns Dxf
T (x, y) and Dyf

T (x, y)) is

(
−2xy/7 (−x2 + 3y2)/7

(−3x2 + y2)/5 2xy/5

)
and so ‖Df(x, y)‖2 =

4x2y2(1/49+1/25)+(3y2−x2)2/49+(y2−3x2)2/25 ≤ 4/49+4/25+9/49+9/25 = 13/49+13/25 < 1

for x2 + y2 ≤ 1, so since (from lecture) ‖f(x, y)− f(a, b)‖ ≤ max(ξ,η)∈D ‖Df(ξ, η)‖‖(x, y)− (a, b)‖
for each (x, y), (a, b) ∈ D, we have shown that f is a contraction. The contraction mapping theorem

then tells us that f has a fixed point in D and a fixed point (x, y) of f clearly satisfies the given

equations. Notice that the fixed point is actually in the open disk x2 + y2 < 1 because we proved

above that f maps D into the open disk.
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8(a) (2 points): Let A be an n × n real matrix (aij). Define the adjoint matrix adjA and give

the proof that A adjA = (detA)I.

Solution: adjA is the n × n matrix which has (−1)i+j detAji in the i-th row and j-th column,

where Aij is the (n− 1)× (n− 1) matrix obtained by deleting the i-th row and j-th column of A.

From lecture we have the formulae for the expansion of detA along the j-th row of A:

(∗)
∑n

k=1ajk((−1)j+k detAjk) = detA, j = 1, . . . , n,

and hence ∑n
k=1a`k((−1)j+k detAjk) = 0 ` 6= j

because by (∗) it is the expression for determinant of the matrix Ã which is the same as A except

that it has row ` of A in both the `-th and the j-th row. Thus∑n
k=1aik((−1)j+k detAjk) = detAδij , i, j = 1, . . . , n.

On the other hand the expression on the left of the previous identity is exactly the element which

appears in the i-th row and j-th column of A adjA and the expression on the right is exactly the

element which appears in the i-th row and j-th column of detAI , so we have proved A adjA =

detAI.

8(b) (3 points): Show that S = {(x, y, z) ∈ R3 : x2+4y2+z2 = 1} is a 2-dimensional C1 manifold

and find a point a ∈ S at which the function f(x, y, z) = xyz takes its maximum.

Note: You should begin by discussing the existence of such a point a ∈ S.

Solution: Let g(x, y, z) = x2 + 4y2 + z2 − 1, so S = {(x, y, z) ∈ R3 : g(x, y, z) = 0}, and note that

Dg(x, y, z) = (2x, 8y, 2y) 6= (0, 0, 0) on S, hence by a result of lecture (the corollary of the implicit

function theorem) S is a 2 dimensional C1 manifold. S is clearly closed and bounded (indeed

(x, y, z) ∈ S ⇒ x2 + y2 + z2 ≤ x2 + 4y2 + z2 ≤ 1 and of course any limit point of S is evidently

in S by continuity of g). Thus f |S attains its maximum (since a continuous function on a closed

bounded set attains its maximum).

According to the Lagrange multiplier result, at any critical point of f |S (and in particular at any

local max/min of f |S) we must have∇f(x, y, z) = λ∇g(x, y, z), where as above g = x2+4y2+z2−1.

Thus at any local max/min of f |S we must have (yz, xz, xy) = λ(2x, 8y, 2z); i.e. we have the 3

equations yz = 2λx, xz = 8λy, xy = 2λz and by multiplying the first by x, the second by y, and

the third by z we get either λ = 0 or x2 = 4y2 = z2. But λ = 0 implies that yz = xz = xy = 0

which implies that xyz = 0 so this cannot happen at a maximum of xyz because there are values

where xyz is positive on S and hence the maximum (which exists by the discussion above) must

be positive. Thus at a max we have x2 = 4y2 = z2, which, since x2 + 4y2 + z2 = 1, gives

x2 = 4y2 = z2 = 1
3 , and the value of f at any such point is ± 1

6
√
3

so the maximum is 1
6
√
3

and is

attained at (x, y, z) = ( 1√
3
, 1
2
√
3
, 1√

3
) (and also at several other points, e.g. (x, y, z) = (−1√

3
, −1
2
√
3
, 1√

3
)).
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