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Math 51H – Duals, adjoints/transposes and the spectral theorem

Suppose V is an n-dimensional vector space over a field F such as R. When discussing determinants,
we have shown that the vector space of m-linear maps, i.e. maps from ×k

i=1V (product of k copies of
V ) to F , linear in each slot, is nk dimensional. Indeed, if e1, . . . , en is a basis of V , such a map α is
determined by its values α(ei1 , . . . , eik), i1, . . . , ik ∈ {1, . . . , n}, which values however can be specified
freely. Concretely, in the case of k = 1, i.e. linear maps α : V → R,

α(
n∑

i=1

ciei) =
n∑

i=1

ciα(ei).

So consider the linear maps fj specified by fj(ei) = 0 if i 6= j, fj(ei) = 1 if i = j (commonly written
as fj(ei) = δij where δij is the ‘Kronecker delta’, i.e. is = 1 if i = j, 0 otherwise), i.e.

fj(
∑
i

ciei) =
∑
i

cifj(ei) = cj .

These form a basis for the set V ∗ of linear maps V → R (called the dual of V ) since any linear map
α can be written as above

α(
n∑

i=1

ciei) =
n∑

i=1

ciα(ei) =
n∑

i=1

(
n∑

j=1

fi(ej)cj)α(ei) =
n∑

i=1

α(ei)fi(
n∑

j=1

cjej),

i.e.

α =
n∑

i=1

α(ei)fi.

A different way of looking at V ∗ is available when V is a vector space over R with an inner product.
Namely consider the map ι : V → V ∗ given by the following: for x ∈ V , ι(x) ∈ V ∗ is the map V → R
given by (ι(x))(v) = x · v. This map ι : V → V ∗ is linear:

ι(αx+ βy)(v) = (αx+ βy) · v = α(x · v) + β(y · v) = αι(x)(v) + βι(y)(v).

(Note that this is a completely different statement from ι(x) : V → R being linear for each x ∈ V ,
since this is the statement that ι(x)(λv+ µw) = x · (λv+ µw) = λx · v+ µx ·w = λι(x)(v) + µι(x)(w)
— the two proofs are very similar, but the statements are quite different!) Moreover, ι is injective:
if ι(x) = 0 (i.e. is the zero map) then ι(x)(x) = 0, but ι(x)x = x · x = ‖x‖2, so x = 0. Since V is
n-dimensional, the rank-nullity theorem states that the range of ι is n-dimensional. But the latter
is a subspace of V ∗ which is n-dimensional, so it is equal to all of V ∗, so ι is onto. This shows that
ι : V → V ∗ is a bijection, i.e. an invertible map.

Now consider adjoints/transposes. Recall that if A : V → V is linear, V an inner product space,
then there is a unique map AT : V → V such that Ax · y = x ·AT y for all x, y ∈ V ; AT is the adjoint
or transpose of A. Indeed, recall that we have shown existence plus uniqueness within the collection
of linear maps by computing AT in an orthonormal basis. Here is a different way of showing this now,
without assuming linearity for the uniqueness statement.

Fix y ∈ V , and consider the map jy : x 7→ Ax ·y. This is a linear map as jy(αx+βz) = αjy(x)+βjy(z),
so it is an element of V ∗. Thus, as ι : V → V ∗ is bijective there exists a unique w ∈ V such that
jy = ι(w), i.e. such that jy(x) = ι(w)(x) for all x ∈ V . But then Ax · y = jy(x) = x · w. So define
AT : V → V by AT y = w, w being the unique element of V such that jy = ι(w). Then AT is
well-defined, and Ax · y = x ·w = x ·Ay. One also checks easily that AT is linear: by the definition of
AT , AT (c1y1 + c2y2) is the unique element of V such that Ax · (c1y1 + c2y2) = x ·AT (c1y1 + c2y2) for
all x ∈ V ; thus for all x ∈ V ,

x ·AT (c1y1 + c2y2) = Ax · (c1y1 + c2y2) = c1Ax · y1 + c2Ax · y2
= c1x ·AT y1 + c2x ·AT y2 = x · (c1AT y1 + c2A

T y2),



where the second equality is from the linearity of the inner product in the second slot, the third from
the definition of AT , and the fourth again from the linearity of the inner product in the second slot.
This is exactly the statement that

ι(AT (c1y1 + c2y2)) = ι(c1A
T y1 + c2A

T y2),

which by the injectivity of ι means AT (c1y1 + c2y2) = c1A
T y1 + c2A

T y2. Thus, AT : V → V is linear,
completing the construction of AT without reference to an orthonormal basis.

To connect this with the notion of transposes of matrices, note that if e1, . . . , en is an orthonormal
basis of V then one can compute the matrix of any operator very easily. Recall that the matrix of
A : V → V is given by {aij}ni,j=1 where Aej =

∑n
i=1 aijei. Since the ei are orthonormal, we have

ek ·Aej =
n∑

i=1

aijek · ei = akj ,

i.e. relabelling the indices,
aij = ei ·Aej .

Correspondingly, the ij matrix entry of AT is

ei ·AT ej = Aei · ej = ej ·Aei = aji.

Thus, in any orthonormal basis, the matrix of the transpose/adjoint of A is the transpose of the matrix
of A. This, however, needs an orthonormal basis.

A very important class of linear maps are the symmetric, or self-adjoint ones. A linear map
A : V → V is symmetric if A = AT , i.e. if Ax · y = x · Ay for all x, y ∈ V . Notice that by what we
showed above, the matrix of a symmetric map in any orthonormal basis is symmetric.

Thus, orthonormal bases are the natural bases for vector spaces with inner products, i.e. inner product
spaces. But how do they arise? One way is from any basis via Gram-Schmidt. But there are also
more natural ways given a symmetric linear map A : V → V . We first make a definition:

Definition 1 If V a vector space over F , I : V → V the identity operator (so Iv = v for all v ∈ V ),
A : V → V is linear, then λ ∈ F is an eigenvalue of A if N(A− λI) 6= {0}, i.e. if there exists v 6= 0
such that (A− λI)v = 0, i.e. if there exists v 6= 0 such that Av = λv.

For an eigenvalue λ of A, we say that v is an eigenvector of A if Av = λv (and v 6= 0, to follow the
book).

For an eigenvalue λ of A, the λ-eigenspace is N(A − λI), i.e. is the subspace of V consisting of
vectors v such that Av = λv.

Here ‘eigen’ is ‘own’ in German; it corresponds to these vectors being very well behaved under the
action of A: they simply get stretched.

An important lemma relates orthogonality and eigenvectors for symmetric operators.

Lemma 1 If A : V → V is symmetric, Ax = λx, Ay = µy, λ 6= µ then x · y = 0, i.e. x and y are
orthogonal.

Proof: λx · y = Ax · y = x ·Ay = µx · y, so (λ− µ)(x · y) = 0. Since λ 6= µ, x · y = 0. �

Thus, for a symmetric operator eigenvectors with different eigenvalues are automatically orthogonal
to each other.



This gives a way of constructing an orthogonal set of vectors in V : suppose λ1, . . . , λm are the eigen-
values of A. (Note that there can be at most n eigenvalues: for each there is a non-zero vector in the
eigenspace, which are automatically orthogonal to each other, thus they are linearly independent, and
there can be at most n linearly independent vectors in V .) Let vj1, . . . , vjkj be an orthonormal basis
of N(A− λjI). Then putting these together, we get an orthonormal collection of vectors

v11, . . . , v1k1 , v21, . . . , v2k2 , . . . , vm1, . . . , vmkm ;

these are orthonormal because eigenvectors in different eigenspaces are automatically orthogonal to
each other. In particular, this is a linearly independent collection of vectors. On the other hand, a
priori it is not clear whether they span V . However, this is guaranteed by the following theorem.

Theorem 1 (Spectral theorem.) Suppose A : V → V is symmetric. Then V has an orthonormal
basis consisting of eigenvectors of A.

The key tool in proving this theorem is the following observation.

Definition 2 An invariant subspace of A : V → V is a subspace W of V such that A : W → W ,
i.e. such that for all w ∈W , Aw ∈W .

Lemma 2 Suppose that A : V → V is symmetric, and W is an invariant subspace of A. Then W⊥

is also an invariant subspace of A.

Proof: Suppose x ∈ W⊥. Then for w ∈ W , Ax · w = x · Aw = 0 since x ∈ W⊥ and Aw ∈ W . This
shows Ax ∈W⊥, and thus the lemma. �

Notice that any eigenspace of A is an invariant subspace of A: if, say, x ∈ N(A − λI), then Ax =
λx ∈ N(A − λI) as well just by virtue of N(A − λI) being a subspace of V . Moreover, if v is any
eigenvector of A, then a similar argument gives that Span{v} is an invariant subspace of A. Thus, in
both cases, the orthocomplement is also invariant for A.

The proof of the theorem now reduces to showing that any symmetric A on a space of dimension
≥ 1 has a single eigenvalue; if we find an eigenvalue λ, then taking v to be an eigenvector of A with
eigenvalue λ, Span{v} is invariant for A, thus so is Span{v}⊥, and the latter has dimension n − 1,
so by an inductive argument we may assume that Span{v}⊥ has an orthonormal basis consisting of
eigenvectors for A; adding v to this set provides a desired basis of V consisting of eigenvectors of A.

In fact, one could avoid induction altogether: if λ1, . . . , λm are the eigenvalues of V as above, let W
be the sum of the corresponding eigenspaces:

W = ⊕m
j=1N(A− λjI).

(Notice that the sum is direct since the summands are linearly independent, indeed orthogonal!) This
is an invariant subspace of V since if vj ∈ N(A−λjI) then A

∑m
j=1 vj =

∑m
j=1Avj ∈ ⊕m

j=1N(A−λjI).

Thus, W⊥ is also an invariant subspace of A, and A is a symmetric operator on it. If W⊥ 6= {0}, and
if we have shown that any symmetric operator on any inner product space of dimension ≥ 1 has an
eigenvalue, then A|W⊥ has an eigenvalue, λ, and a corresponding eigenvector v 6= 0, so Av = λv, so
λ is an eigenvalue of A and v is in the corresponding eigenspace, so v ∈ W , which is a contradiction
with v ∈W⊥.

So the main point is to show the following lemma; once this is shown, the spectral theorem follows.

Lemma 3 If dimV ≥ 1, A : V → V symmetric then A has an eigenvalue on V .



In order to motivate the proof, consider the Rayleigh quotient:

A(x) =
Ax · x
‖x‖2

, x ∈ V, x 6= 0.

Notice that this is unchanged if one replaces x by a non-zero multiple:

A(tx) =
A(tx) · (tx)

‖tx‖2
=
Ax · x
‖x‖2

= A(x), t 6= 0.

Let us now see how A behaves on a sum of eigenvectors x =
∑m

j=1 vj , vj = N(A − λjI), λj distinct
eigenvalues, so the vj are automatically orthogonal to each other. Then (if not all vj vanish)

A(x) =

∑m
j=1Avj ·

∑m
i=1 vi∑m

j=1 vj ·
∑m

i=1 vi
=

∑m
j=1 λjvj ·

∑m
i=1 vi∑m

j=1

∑m
i=1 vj · vi

=

∑m
j=1 λj

∑m
i=1 vj · vi∑m

j=1 vj · vj
=

∑m
j=1 λj‖vj‖2∑m
j=1 ‖vj‖2

In particular, if the λj are ordered: λ1 < λ2 < . . . < λm then

λ1 =

∑m
j=1 λ1‖vj‖2∑m
j=1 ‖vj‖2

≤
∑m

j=1 λj‖vj‖2∑m
j=1 ‖vj‖2

≤
∑m

j=1 λm‖vj‖2∑m
j=1 ‖vj‖2

= λm.

Correspondingly, a reasonable idea is to look at the minimum of A to find λ1; similarly, one could
look for the maximum of A to find λm.

But this is easy: since A(x) = A( x
‖x‖), with x

‖x‖ a unit vector, simply consider the constrained

minimization problem: find the minimum of A on the unit sphere S = {x : ‖x‖ = 1}. This is
equivalent to finding the minimum of f(x) = Ax · x on S. But

f(x+ h) = A(x+ h) · (x+ h) = Ax · x+Ah · x+Ax · h+Ah · h = f(x) + 2Ax · h+Ah · h,

with |Ah ·h| ≤ C‖h‖2 for some C (for instance, C = ‖A‖). Thus, Df(x)h = 2Ax ·h, i.e. ∇f(x) = 2Ax.
Similarly, with g(x) = ‖x‖2, Dg(x)h = 2x ·h, i.e. ∇g(x) = 2x. Correspondingly, since critical points of
f on S are exactly the points x at which ∇f(x) = λ∇g(x) for some λ ∈ R, they are exactly the points
x for which Ax = λx, i.e. exactly the unit vectors which are eigenvectors of A. Since S is compact,
f actually attains its maximum and minimum on S, and as we have just seen, these are necessarily
attained at eigenvectors of A. Thus, A has an eigenvector and eigenvalue on V , proving the lemma,
and thus the spectral theorem.

Note that this is actually more than just an existence proof: for any A, we actually found the smallest
eigenvalue by minimizing the Rayleigh quotient (and the largest by maximizing it). One could proceed
inductively to find all eigenvalues: once one has the smallest one, λ1 with an eigenvector v11, restrict
A to Span{v11}⊥, and find the smallest eigenvalue and an eigenvector there. The eigenvalue one finds
is ≥ λ1; if it is = λ1, one found another, orthogonal to the first, eigenvector v12 in the λ1-eigenspace;
otherwise one found the second smallest eigenvalue λ2 and an eigenvector v21. In the first case one
now restricts A to Span{v11, v12}⊥, in the second to Span{v11, v21}⊥, and proceeds inductively to find
all eigenvalues and an orthonormal basis of eigenvectors.


