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Math 51H – Contraction mapping theorem and ODEs

The contraction mapping theorem concerns maps f : X → X, (X, d) a metric space, and their fixed
points. A point x is a fixed point of f if f(x) = x, i.e. f fixes x. A contraction mapping is a map
f : X → X such that there is θ ∈ (0, 1) such that d(f(x), f(y)) ≤ θd(x, y) for all x, y ∈ X.

Theorem 1 Suppose X is a complete metric space, and f : X → X is a contraction mapping. Then
f has a unique fixed point x.

Remark 1 Note that if (Z, d) is a complete metric space and X is a closed subset, then X is complete
(with the relative metric). Indeed, if {xn}∞n=1 is a Cauchy sequence in X, then it is such in Z, thus it
converges to some x ∈ Z. But then x is a limit point of X, and X is closed, so x ∈ X, proving the
desired completeness (every Cauchy sequence in X converges to a point in X).

Remark 2 Note that any contraction mapping is (uniformly!) continuous; one can take δ = ε in the
definition of continuity.

Proof of the Theorem: First suppose x, x ′ are fixed points of f . Then f(x) = x, f(x ′) = x ′, so

d(x, x ′) = d(f(x), f(x ′)) ≤ θd(x, x ′),

so (1− θ)d(x, x ′) ≤ 0, so d(x, x ′) ≤ 0, so d(x, x ′) = 0, so x = x ′, showing uniqueness.

We now turn to existence. To do so, take an arbitrary x0 ∈ X, and define xn inductively: xn+1 = f(xn),
n ≥ 0. We claim that {xn}∞n=0 is Cauchy. To see this, notice first that for all n ≥ 1,

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ θd(xn, xn−1),

so by induction,
d(xn+1, xn) ≤ θnd(x1, x0).

Thus, for n > m, using the triangle inequality,

d(xn, xm) ≤ d(xn, xn−1) + . . .+ d(xm+1, xm) ≤ (θn−1 + θn−2 + . . .+ θm)d(x1, x0).

Summing the finite geometric series,

d(xn, xm) ≤ θm(1 + θ + . . .+ θn−m−1)d(x1, x0) = θmd(x1, x0)
1− θn−m

1− θ
≤ θmd(x1, x0)

1− θ
.

Since limm→∞ θ
m = 0, we have that given ε > 0 there exists N such that m ≥ N implies θm <

ε 1−θ
1+d(x1,x0)

, and thus for n,m ≥ N , d(xn, xm) < ε, proving the Cauchy claim.

But X is complete, so x = limn→∞ xn exists. Since f is continuous and limxn = x, sequen-
tial continuity shows that lim f(xn) = f(x). But f(xn) = xn+1, so limn→∞ xn+1 = f(x). Since
limn→∞ xn = limn→∞ xn+1, we deduce that f(x) = x, so x is a fixed point of f as claimed. �

We now use this in the simplest ODE setting. An ODE (ordinary differential equation) is an equation
of the form

x ′(t) = F (t, x(t)), x(t0) = x0 (1)

where F : R × Rn → Rn is a given function, t0 ∈ R, x0 ∈ Rn, and one is looking for a solution x at
least on an interval near t0, say [t0−δ, t0 +δ], δ > 0, so x ∈ C1([t0−δ, t0 +δ]). We impose the minimal
requirement that F be continuous for the following discussion.

Rather than considering the ODE directly, we rewrite it as an integral equation using the fundamental
theorem of calculus:

x(t) = x(t0) +

∫ t

t0

x ′ = x0 +

∫ t

t0

F (τ, x(τ)) dτ.



Note that any solution of the original ODE solves the integral equation

x(t) = x0 +

∫ t

t0

F (τ, x(τ)) dτ, (2)

and conversely if x ∈ C0([t0 − δ, t0 + δ]) merely solving (2), then in fact x is C1 by the fundamental
theorem of calculus (since F is continuous, being the composite of continuous functions!), and solves
the ODE.

Thus, from now on we consider (2). We consider the equation as a fixed point claim for a map
T : X → X, X = C0([t0 − δ, t0 + δ]). Concretely, let

Tx(t) = x0 +

∫ t

t0

F (τ, x(τ)) dτ ;

so certainly T : X → X. Now, as d(x, y) = sup{‖x(t)− y(t)‖ : t ∈ [t0 − δ, t0 + δ]}, we have

d(Tx, Ty) = sup
{∥∥∥(x0 +

∫ t

t0

F (τ, x(τ)) dτ)− (x0 +

∫ t

t0

F (τ, y(τ)) dτ)
∥∥∥ : t ∈ [t0 − δ, t0 + δ]

}
= sup

{∥∥∥∫ t

t0

(F (τ, x(τ))− F (τ, y(τ))) dτ)
∥∥∥ : t ∈ [t0 − δ, t0 + δ]

}
.

So let us suppose that F is globally Lipschitz in the second variable, i.e. for some δ0 > 0,

‖F (t, x)− F (t, y)‖ ≤M‖x− y‖, x, y ∈ Rn, t ∈ [t0 − δ0, t0 + δ0]. (3)

Then, if δ ≤ δ0, t ≥ t0 (with a similar calculation if t < t0)∥∥∥∫ t

t0

(F (τ, x(τ))− F (τ, y(τ))) dτ)
∥∥∥ ≤ ∫ t

t0

‖(F (τ, x(τ))− F (τ, y(τ))‖ dτ ≤
∫ t

t0

M‖x(τ)− y(τ)‖ dτ

≤
∫ t

t0

M sup{‖x(s)− y(s)‖ : s ∈ [t0 − δ, t0 + δ]} dτ

= M(t− t0) sup{‖x(s)− y(s)‖ : s ∈ [t0 − δ, t0 + δ]}
≤Mδ sup{‖x(s)− y(s)‖ : s ∈ [t0 − δ, t0 + δ]} = Mδd(x, y).

(4)

Thus,
d(Tx, Ty) ≤Mδd(x, y),

so it is a contraction mapping provided δ < 1
M .

So take δ < 1/M , δ ≤ δ0. Then T is a contraction mapping on the complete metric space C0([t0 −
δ, t0 + δ];Rn) (continuous maps from [t0 − δ, t0 + δ] to Rn), with completeness shown in Problem set
9, Problem 7. Thus, it has a unique fixed point x ∈ C0([t0 − δ, t0 + δ];Rn), which as explained means
that the ODE has a unique solution on [t0 − δ, t0 + δ]:

Theorem 2 Suppose F is globally Lipschitz on [t0 − δ0, t0 + δ0]×Rn in the sense of (3). Then there
is δ > 0, δ ≤ δ0 such that the ODE (1) has a unique C1 solution on [t0 − δ, t0 + δ].

This is the simplest local existence and uniqueness theorem for ODE. The only unsatisfactory assump-
tion in it is (3). Notice that the estimate of (3) is a very reasonable assumption locally, namely if it
is replaced by

‖F (t, x)− F (t, y)‖ ≤M‖x− y‖, x, y ∈ BR(0), t ∈ [t0 − δ0, t0 + δ0], (5)



where BR(0) is the closed ball of radius R in Rn: BR(0) = {x ∈ Rn : ‖x‖ ≤ R}. Indeed, in this
case it follows from F being C1, since by the fundamental theorem of calculus, just as in our proof of
Taylor’s theorem,

F (t, x)− F (t, y) =

n∑
j=1

(xj − yj)
∫ 1

0
DjF (t, y + s(x− y)) ds =

∫ 1

0
DF (t, y + s(x− y))(x− y) ds,

where Dj , D denote derivatives in the second slot. Thus,

‖F (t, x)− F (t, y)‖ ≤
∫ 1

0

∥∥∥DF (t, y + s(x− y))(x− y)
∥∥∥ ds

≤
∫ 1

0

∥∥DF (t, y + s(x− y))
∥∥‖x− y‖ ds = ‖x− y‖

∫ 1

0

∥∥DF (t, y + s(x− y))
∥∥ ds,

so if F is C1, so DjF are bounded on the compact set [t0 − δ0, t0 + δ0]×BR(0),

‖F (t, x)− F (t, y)‖ ≤ C‖x− y‖, C = sup{‖DF (z)‖ : z ∈ [t0 − δ0, t0 + δ0]×BR(0)}.

The more natural ODE theorem is then:

Theorem 3 Suppose F is locally Lipschitz on [t0 − δ0, t0 + δ0] × BR(0), R > 0, in the sense of (5).
Then there is δ > 0, δ ≤ δ0 such that for x0 ∈ BR/2(0) the ODE (1) has a unique C1 solution on
[t0 − δ, t0 + δ] with ‖x(t)‖ ≤ R on [t0 − δ, t0 + δ].

Proof: Let C0 = sup{‖F (z)‖ : ∈ [t0 − δ0, t0 + δ0] × BR(0)}. Then for ‖x0‖ ≤ R/2, δ ≤ δ0, x ∈
C0([t0 − δ, t0 + δ];Rn) with ‖x(t)‖ ≤ R for t ∈ [t0 − δ, t0 + δ], and for t ≥ t0 (with a similar formula
for t < t0),

‖(Tx)(t)‖ ≤ ‖x0‖+

∫ t

t0

‖F (τ, x(τ)‖ dτ ≤ R/2 + C0(t− t0) ≤ R/2 + C0δ.

Thus, if δ < R/(2C0 + 1), then

‖(Tx)(t)‖ ≤ R, t ∈ [t0 − δ, t0 + δ].

Thus, if we let X = {x ∈ C0([t0 − δ, t0 + δ];Rn) : sup ‖x‖ ≤ R}, then T : X → X provided
δ < R/(2C0 + 1) (and δ ≤ δ0).
Further, for x ∈ X, we have by (5)

‖F (t, x(t))− F (t, y(t))‖ ≤M‖x(t)− y(t)‖, t ∈ [t0 − δ, t0 + δ],

so the calculation of (4) applies. This gives that if in addition δ < M−1 then T is a contraction
mapping, and thus the contraction mapping theorem gives a unique fixed point. This gives a unique
solution to the ODE with the property that ‖x(t)‖ ≤ R for t ∈ [t0− δ, t0 + δ], and proves the theorem.
�


