Mathematics Department Stanford University
Math 51H — Contraction mapping theorem and ODEs

The contraction mapping theorem concerns maps f : X — X, (X, d) a metric space, and their fixed
points. A point z is a fixed point of f if f(x) = z, i.e. f fixes . A contraction mapping is a map
f X — X such that there is # € (0,1) such that d(f(x), f(y)) < 0d(z,y) for all z,y € X.

Theorem 1 Suppose X is a complete metric space, and f : X — X is a contraction mapping. Then
f has a unique fixed point x.

Remark 1 Note that if (Z,d) is a complete metric space and X is a closed subset, then X is complete
(with the relative metric). Indeed, if {x,}72 is a Cauchy sequence in X, then it is such in Z, thus it
converges to some x € Z. But then x is a limit point of X, and X is closed, so x € X, proving the
desired completeness (every Cauchy sequence in X converges to a point in X ).

Remark 2 Note that any contraction mapping is (uniformly!) continuous; one can take § = € in the
definition of continuity.

Proof of the Theorem: First suppose x,z’ are fixed points of f. Then f(x) =z, f(z’) =2/, so
d(z,z") = d(f(2), f(2') < 0d(z,z"),
so (1 —=0)d(xz,2") <0, s0 d(z,2") <0, s0 d(z,z") =0, so x = z’, showing uniqueness.

We now turn to existence. To do so, take an arbitrary zo € X, and define x,, inductively: z,+1 = f(x,),
n > 0. We claim that {z, }7°, is Cauchy. To see this, notice first that for all n > 1,

d(xn+17 xn) = d(f(wn)a f(xnfl)) < Od(l‘n, $n,1),

so by induction,
d(xn—f—l) xn) < end(ﬂjl) 370)'

Thus, for n > m, using the triangle inequality,
A(xp, ) < d(Tny Tn1) + oo+ d(@ma1, Tm) < (0L + 0724 4+ 0™)d(z1, 20).
Summing the finite geometric series,
1—enm md(z1,0)
1-0 1-140
Since lim,,— o 8" = 0, we have that given € > 0 there exists N such that m > N implies ™ <

A(xp, Tp) <O +0+ ...+ 60" Hd(x1, z9) = 0™d(x1, 0)

5#10@’0)’ and thus for n,m > N, d(zy, zy) < €, proving the Cauchy claim.
But X is complete, so x = lim, ,o x, exists. Since f is continuous and limzx, = =z, sequen-

tial continuity shows that lim f(z,) = f(x). But f(zn) = @npy1, so limp oo ny1 = f(z). Since
limy, 00 Ty, = limy, 300 Tpt1, we deduce that f(x) = x, so = is a fixed point of f as claimed. [
We now use this in the simplest ODE setting. An ODE (ordinary differential equation) is an equation
of the form

a'(t) = F(t,z(t)), z(to) = 2o (1)
where F' : R x R” — R" is a given function, tg € R, o € R", and one is looking for a solution z at

least on an interval near to, say [to—6,to+6], § > 0, so x € C([tg—d,to+J]). We impose the minimal
requirement that F' be continuous for the following discussion.

Rather than considering the ODE directly, we rewrite it as an integral equation using the fundamental
theorem of calculus:

t t
x(t) = z(to) + / ' =z + /t F(r,z(7)) dr.

to 0



Note that any solution of the original ODE solves the integral equation

x(t) = xzo + t F(r,z(7))dr, (2)

and conversely if z € CY([to — &, t9 + 6]) merely solving (2)), then in fact z is C* by the fundamental
theorem of calculus (since F' is continuous, being the composite of continuous functions!), and solves
the ODE.

Thus, from now on we consider . We consider the equation as a fixed point claim for a map
T:X — X, X =C%ty—9,to + d]). Concretely, let

Tx(t) = xo —i—/ F(r,z(7))dr;

to
so certainly 7' : X — X. Now, as d(z,y) = sup{||z(¢t) — y(t)|| : t € [to — J,to + I]}, we have

d(Tz,Ty) = Sup{H(xg + /t F(r,2(7)) dr) — (w0 + t

to to

F(r,y(1)) dT)H Lt [ty — 0,0+ 5]}

t
- sup{H / (F(r, (1)) - F(T,y(T)))dT)H L te [t — d.to + 5]}.
to
So let us suppose that F' is globally Lipschitz in the second variable, i.e. for some d§y > 0,
[ F(t,x) = F(t,y)|| < M|z -y, x,y € R",t € [to — do, to + do]. (3)

Then, if 6 < dp, t > tp (with a similar calculation if t < ()

H /t:(F(T,JZ(T)) — F(r,y(1))) dT)H < t: W(F(r,z(1)) — F(1,y(7))| dT < /t:MHl‘(T) —y(7)|| dr

< [ Mrsup s~y + 5 € o — .10+ ol dr ()
= M(t —to) sup{||z(s) —y(s)|| : s € [to—d,to+ 0]}
< Mésup{|lx(s) —y(s)| : s € [to — &,t0 + 8]} = Mdd(z,y).

Thus,
d(Tx, Ty) < Méd(z,y),

S0 it is a contraction mapping provided § < ﬁ

So take § < 1/M, § < &y. Then T is a contraction mapping on the complete metric space C°([tg —
d,tp + 0]; R™) (continuous maps from [ty — d,%y + J] to R™), with completeness shown in Problem set
9, Problem 7. Thus, it has a unique fixed point 2 € C°([tg — 6, o + 6]; R™), which as explained means
that the ODE has a unique solution on [tg — d,to + 0]:

Theorem 2 Suppose F' is globally Lipschitz on [tg — dg,to + o] X R™ in the sense of . Then there
is 0 > 0, 0 < &g such that the ODE has a unique C solution on [ty — d,tg + 6].

This is the simplest local existence and uniqueness theorem for ODE. The only unsatisfactory assump-
tion in it is (3). Notice that the estimate of is a very reasonable assumption locally, namely if it
is replaced by

I (t,2) = F(t,y)ll < Mllz =y, z,y € Br(0),t € [to — o, t0 + do, ()



where Bg(0) is the closed ball of radius R in R™: Br(0) = {z € R* : |jz|| < R}. Indeed, in this
case it follows from F being C!, since by the fundamental theorem of calculus, just as in our proof of
Taylor’s theorem,

n 1 1
F(t,x)—F(tﬁy)zjzzjl(:vj—yj)/o DjF(t’erS(x—y))ds:/o DFE(t,y+ s(x —y))(z —y) ds,

where D;, D denote derivatives in the second slot. Thus,
1
1F(ta) = Pt < [ [DPGy+ sta = )ia =) as

1 1
S/O \\DF(t,y+8(w—y))IHIw—deS—Hw—yH/O |DF(t,y + s(z —y))| ds,

so if Fis C*, so D;F are bounded on the compact set [ty — &g, to + do] X Br(0),

|F(t,z) = F(t,y)| < Cllz —yll, C=sup{|DF(z)| : 2 € [to — do,to + o] x Br(0)}.
The more natural ODE theorem is then:

Theorem 3 Suppose F is locally Lipschitz on [to — do,to + o] X Br(0), R > 0, in the sense of .
Then there is § > 0, § < &y such that for xg € §3/2(0) the ODE has a unique C solution on
[t(] —0,tg + (5] with ||.TU(t)H <R on [t(] —d,tg + (5]

Proof: Let Cq = sup{||F(2)|| : € [to — d0,t0 + do] x Br(0)}. Then for ||zo| < R/2, § < by, = €
C%[to — 0,t0 + 0); R™) with ||z(t)|| < R for t € [tg — ,to + d], and for ¢t > ¢y (with a similar formula
for t < tp),

|(T)(t)]] < ||lzoll + /t |F(r,z(7)|| dr < R/2+ Cy(t —ty) < R/2+ Cyo.

Thus, if § < R/(2Cy + 1), then
[(Tz)(@)|| < R, t € [to— 6,t0 + 6]

Thus, if we let X = {x € C%[to — 0,t0 + 0];R?) : sup|lz| < R}, then T : X — X provided
d < R/(2Cy+1) (and 6 < dp).

Further, for € X, we have by
[E (¢, () — F(t,y(t)|| < Mllz(t) —y@)l], t € [to — d,t0 + 4],

so the calculation of applies. This gives that if in addition § < M~! then 7 is a contraction
mapping, and thus the contraction mapping theorem gives a unique fixed point. This gives a unique
solution to the ODE with the property that ||z(¢)|| < R for t € [to — I, to + 0], and proves the theorem.
O



