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Math 51H – Chain rule

As a warm up to the chain rule, let’s talk about the composition of continuous functions.

Theorem 1 Suppose (X, dX), (Y, dY ), (Z, dZ) are metric spaces, f : X → Y is continuous at a ∈ X,
g : Y → Z is continuous at f(a) ∈ Y . Then g ◦ f : X → Z is continuous at a.

Proof: Given ε > 0 take δ ′ > 0 using the definition of continuity of g at f(a) so dY (y, f(a)) < δ ′

implies dZ(g(y), g(f(a))) < ε, and then take δ > 0 using the definition of continuity of f at a for δ ′, so
dX(x, a) < δ implies dY (f(x), f(a)) < δ ′. Then dX(x, a) < δ implies dZ(g(f(x)), g(f(a)) < ε, giving
the desired continuity. �

We are now ready for the chain rule.

Theorem 2 Suppose U ⊂ Rn, V ⊂ Rm are open, f : U → V , g : V → Rp, x ∈ U , f differentiable at
x, g differentiable at f(x). Then g ◦ f is differentiable at x with

(D(g ◦ f))(x) = (Dg)(f(x))(Df)(x).

Proof: Write
f(x+ h) = f(x) + (Df)(x)h+Rf (x, h),

i.e. define Rf (x, h) = f(x+ h)− (f(x) + (Df)(x)h), so the differentiability of f at x is equivalent to:
for all εf > 0 there is δf = δf (εf ) > 0 such that

‖h‖ < δf ⇒ ‖Rf (x, h)‖ ≤ εf‖h‖.
Similarly, write

g(y + k) = g(y) + (Dg)(y)k +Rg(y, k)

so that the differentiability of g at f(x) is equivalent to: for all εg > 0 there is δg = δg(εg) > 0 such
that

‖k‖ < δ ⇒ ‖Rg(f(x), k)‖ ≤ εg‖k‖.
In order to prove the theorem we need to show that for all ε > 0 there exists δ > 0 such that

‖h‖ < δ ⇒ ‖g(f(x+ h))− g(f(x))− (Dg)(f(x))(Df)(x)h‖ ≤ ε‖h‖. (1)

So let us first express g(f(x+ h)) using the notation we introduced. We have

g(f(x+ h)) = g(f(x) + (Df)(x)h+Rf (x, h)),

so with k = (Df)(x)h+Rf (x, h) we get

g(f(x+ h)) = g(f(x)) + (Dg)(f(x))((Df)(x)h+Rf (x, h)) +Rg(f(x), (Df)(x)h+Rf (x, h)),

and so
‖g(f(x+ h))− g(f(x))− (Dg)(f(x))(Df)(x)h‖

= ‖(Dg)(f(x))Rf (x, h) +Rg(f(x), (Df)(x)h+Rf (x, h))‖
≤ ‖(Dg)(f(x))Rf (x, h)‖+ ‖Rg(f(x), (Df)(x)h+Rf (x, h))‖

by the triangle inequality. Thus, (1) is reached if given ε > 0 we find δ > 0 such that

‖h‖ < δ ⇒ ‖(Dg)(f(x))Rf (x, h)‖ ≤ ε

2
‖h‖ and ‖Rg(f(x), (Df)(x)h+Rf (x, h))‖ ≤ ε

2
‖h‖. (2)

Now, the first inequality is easy to arrange: as

‖(Dg)(f(x))Rf (x, h)‖ ≤ ‖(Dg)(f(x))‖‖Rf (x, h)‖,



it suffices if we arrange

‖Rf (x, h)‖ ≤ ε

2(‖(Dg)(f(x))‖+ 1)
‖h‖

for then

‖(Dg)(f(x))Rf (x, h)‖ ≤ ‖(Dg)(f(x))‖‖Rf (x, h)‖ ≤ ε‖(Dg)(f(x))‖
2(‖(Dg)(f(x))‖+ 1)

‖h‖ ≤ ε

2
‖h‖.

But this is now easy: apply the definition of differentiability of f with εf = ε
2(‖(Dg)(f(x))‖+1) to get

δf = δf

( ε

2(‖(Dg)(f(x))‖+ 1)

)
;

if we take any δ ≤ δf , then ‖h‖ ≤ δ implies ‖h‖ ≤ δf and thus that (2) holds.

We now turn to the second, more subtle inequality. By the definition of the differentiability of g at
f(x), we have that for any εg > 0 there is δg > 0 such that

‖(Df)(x)h+Rf (x, h)‖ < δg ⇒ ‖Rg(f(x), (Df)(x)h+Rf (x, h))‖ ≤ εg‖(Df)(x)h+Rf (x, h)‖. (3)

So clearly it is important to control ‖(Df)(x)h+Rf (x, h)‖. Here (Df)(x)h has size comparable to h,
Rf (x, h) can be made smaller than any multiple of h, but as we are adding this to (Df)(x)h it makes
no difference if we make the multiple small (the sum will not be a small multiple anyway). So let’s
use the definition of the differentiability of f at x with εf = 1: there exists δf = δf (1) such that

‖h‖ < δf (1)⇒ ‖Rf (x, h)‖ ≤ ‖h‖.

Thus, for ‖h‖ < δf (1),

‖(Df)(x)h+Rf (x, h)‖ ≤ ‖Df(x)‖ ‖h‖+ ‖Rf (x, h)‖ ≤ (‖Df(x)‖+ 1)‖h‖.

So, with εg to be determined still, we have

‖h‖ < δf (1) and (‖Df(x)‖+ 1)‖h‖ < δg(εg)⇒
‖Rg(f(x), (Df)(x)h+Rf (x, h))‖ ≤ εg‖(Df)(x)h+Rf (x, h)‖ ≤ εg(‖Df(x)‖+ 1)‖h‖

(4)

since (‖Df(x)‖ + 1)‖h‖ < δg(εg) implies ‖(Df)(x)h + Rf (x, h)‖ ≤ (‖Df(x)‖ + 1)‖h‖ < δg(εg), and
now we apply (3). We are now very close. Let εg = ε

2(‖Df(x)‖+1) to get

δg = δg

( ε

2(‖Df(x)‖+ 1)

)
.

Then by (4)

‖h‖ < δf (1) and (‖Df(x)‖+ 1)‖h‖ < δg

( ε

2(‖Df(x)‖+ 1)

)
imply

‖Rg(f(x), (Df)(x)h+Rf (x, h))‖ ≤ ε

2(‖Df(x)‖+ 1)
(‖Df(x)‖+ 1)‖h‖ =

ε

2
‖h‖.

So if
‖h‖ < δf (1) and ‖h‖ < (‖Df(x)‖+ 1)−1δg

( ε

2(‖Df(x)‖+ 1)

)
,

then
‖Rg(f(x), (Df)(x)h+Rf (x, h))‖ ≤ ε

2
‖h‖.

So we now simply let δ to be the minimum of the three constraints we have for ‖h‖:

δ = min
(
δf

( ε

2(‖(Dg)(f(x))‖+ 1)

)
, δf (1), (‖Df(x)‖+ 1)−1δg

( ε

2(‖Df(x)‖+ 1)

))
;

then ‖h‖ < δ implies that

‖(Dg)(f(x))Rf (x, h)‖ ≤ ε

2
‖h‖ and ‖Rg(f(x), (Df)(x)h+Rf (x, h))‖ ≤ ε

2
‖h‖,

i.e. (2) has been shown. This proves (1) and completes the proof. �


