
 

 

Genetics 210 
Problem Set 2 
Due: May 2, 2013 
Email to gene210.stanford@gmail.com 
 

 
In all of the previous GWAS examples we have explored, the phenotype has 
been a discrete variable. For example, either you have wet earwax or dry, bitter 
taster or not, brown eyes or blue (or green). However, phenotypes are not always 
black and white. For example, people are not just tall and short but many 
gradations in between -- this is called a quantitative variable. This is true for 
many clinically relevant phenotypes as well. For example, the severity of Type 2 
Diabetes if often assessed using fasting glucose levels in the blood. Higher levels 
indicate a more severe case of diabetes, while lower levels (but still high) may 
only indicate a risk of diabetes. Another case where quantitative phenotypes are 
important is in drug response. The necessary dose of warfarin (a common 
anticoagulant and rat poison) is highly variable across the population. Finding the 
correct stable dose is important to mitigate the chance of severe adverse events 
associated with warfarin use (e.g. internal bleeding or excessive clotting). Here 
we explore a quantitative GWAS, compare it to a traditional case/control GWAS, 
and also learn a little about covariates and regression analysis. 

 
To complete this part of the problem set you will need to download some data from the 
website. You can download the data file here: 
http://stanford.edu/class/gene210/files/problem-sets/2011/warfarin-gwas.csv 
 
The data you downloaded is from a quantitative GWAS exploring the genetic 
determinants of warfarin dosing 
(http://bloodjournal.hematologylibrary.org/content/112/4/1022.full.pdf). The genetics of 
warfarin dosing is of special interest since it is difficult to predict from clinical variables 
alone. For example, your little grandmother may require a huge dose of warfarin while 
Stanford Linebacker, Shane Skov (6’ 3”, 251lbs) may require a very small dose. This 
variance can be partially explained using genetics. 
 
The following instructions assume you are using Microsoft Excel to perform this 
analysis. Experts may use the data analysis software of their choice. 
 

1) We will now make 4 scatter plots of the data. For each of the following clinical 
variables make a scatter of plot with warfarin dose on the y-axis and the clinical 
variable on the x-axis. For each plot, describe whether the data appear correlated, 
anti-correlated or unrelated. 



 

 

 
Sex does not appear to be correlated with warfarin dose. 
 
 

 

 
 
Age does not appear to be correlated with warfarin dose. 
 
 

 



 

 

 
 
Weight appears to be slightly correlated with warfarin dose. Individuals with higher 
weight generally require a higher warfarin dose. 

 
 

 
Warfarin dose does not appear to be correlated with race. 
 

 



 

 

2) One SNP in the gene, VKORC1, is the most significant genetic covariate known for 
warfarin dose. Here is a bar graph showing warfarin dose versus VKORC1 genotype. 
Can you say anything about whether the A allele of VKORC1 is recessive, semi-
dominant, or dominant to the G allele for this trait? Explain. 

 
 

Overall	  individuals	  with	  an	  A	  allele	  seem	  to	  require	  less	  warfarin,	  while	  individuals	  
with	  G	  alleles	  require	  more.	  Looking	  at	  the	  graph	  is	  appears	  that	  heterozygotes	  
resemble	  GG	  homozygotes	  more	  closely	  than	  AA	  homozygotes,	  suggesting	  that	  the	  A	  
allele	  is	  recessive	  to	  the	  G	  allele.	  It	  is	  hard	  to	  tell	  if	  the	  G	  allele	  is	  truly	  dominant	  or	  
semi-‐dominant	  to	  the	  A	  allele	  given	  the	  range	  of	  the	  phenotype.	  	  

   
 
 
Regression analysis allows you to combine multiple independent variables together in 
order to predict an outcome variable. This outcome variable is often called the 
dependent variable. In our case the dependent variable is the warfarin dose and the 
independent variables are the clinical variables (i.e. sex, weight, age, and race) and the 
genetic variable (i.e. VKORC1 genotype). What is important about regression is that it 
allows you to combine the independent variables in proportion to how much of the 
phenotypic variance they explain. For example, if sex explains more of the variance of 
warfarin dose than age then sex will receive more weight. We will now perform a 
regression analysis to predict warfarin dose.  
 
In this class we are focused on the interpretation and implications of the results of 
genetic analysis. Therefore the majority of the computational tasks have been 
completed for you. 



 

 

 
3) A regression analysis was performed using sex, age, weight, race, and VKORC1 

genotypes as the independent variables (these data are listed in your downloaded 
file). Each variable’s coefficient is listed in the table below. The coefficient is the 
“weight” that’s assigned to that variable. Note that when a dependent variable is 
discrete, as it is for sex, then you must use “indicator” variables, which transform 
them into numerical values. For example, the indicator variable for sex says that if the 
patient is female the value is “0” and if the patient is male, the value is “1.” The fact 
that the coefficient of the sex variable is negative means that males, on average, 
require a lower dose of warfarin than females. 

 

Independent Variable Coefficient 
Sex  

(0 = female, 1 = male) -0.639 

Age -0.038 
Weight 0.016 

Race  
(0 = Hispanic, 1 = white) -0.239 

VKORC1 
(0 = AA, 1 = AG) 2.203 

VKORC1 
(0 = AA, 1 = GG) 4.117 

 
 

a. Examine the coefficient values in the table above. What do they tell you about 
the relationship between each independent variable and warfarin dose? Does 
this make sense considering the plots you made in (1)? (Hint: If you are stuck, 
read through the paragraph that precedes the table again ;) 
 

These	  coefficients	  make	  sense.	  They	  tell	  us	  the	  relative	  effect	  of	  each	  variable	  on	  
warfarin	  dose	  prediction.	  The	  variables	  age,	  weight,	  and	  race	  all	  have	  a	  tiny	  effect	  on	  
warfarin	  dose,	  whereas	  VKORC1	  genotypes	  at	  this	  SNP	  have	  a	  large	  (~2X	  per	  G	  allele	  
present)	  effect	  on	  warfarin	  dose.	  This	  is	  consistent	  with	  the	  relationships	  seen	  in	  
previous	  plots.	  

 
 

b. Create a new column in the spreadsheet named “predicted_dose.” Enter a 
formula into each cell of this column that multiplies the value of each 
independent variable by its coefficient. For example, the formula for just the 
first two independent variables is “=-0.639*B2+-0.038*C2”. Make sure you use 
all the independent variables listed in the table above in your formula. 

c. Make a plot of the actual warfarin dose to the predicted warfarin dose. Paste 
the plot below and describe the relationship between the actual dose and 
predicted dose. 
 



 

 

 
This plot predicts actual warfarin dose much better than the previous plots analyzed in part 1. 
The R2 value for VKORC1 genotype alone was 0.2388, compared to this correlation value of 
0.3963, indicating that including other clinical measures is helpful for predicting warfarin dose, 
despite the fact that alone they are not very useful.  Overall the predictive dose appears to 
underestimate the actual dose.  

	  	  
 

d. Compare and contrast the plot you made in (c) to those you made in (1) and 
(2). 
 

The (C) graph has by far the best correlation between values, suggesting that overall when the 
data is taken together we have a relatively good predictive power of warfarin dose.  This is 
because the predicted dose takes each variable into account while also weighing the effect.  
Taking all the variables into account produces the most complete picture.  Using multiple 
variables allows a much greater range of predicted doses, matching the wide range of actual 
doses. 
 
4) We have just completed our first quantitative GWAS*! We did not go through how to 

compute the p-values for this analysis, but you’ll need to know that the p-value for the 
association between VKORC1 and warfarin dose in the multivariate linear regression 
is 8.45e-14. Now we are going to compare quantitative GWAS to a case/control 
GWAS. 

a. Create a new column called “discrete_dose” which contains a “TRUE” if the 
warfarin dose is greater than 5 and “FALSE” if the warfarin dose is less than or 
equal to 5. 

b. Using this new column complete the following contingency table (note the 
similarity to the tables you’ve made in previous GWAS analysis). 

 
 
 



 

 

Observed: AA AG GG 
TRUE  0 24 40 
FALSE 20 51 26 
    
 
    

 
 
Expected: 

 AA AG GG 
TRUE  
(dose > 5) 7.95031 29.81366 26.23602 

FALSE  
(dose <= 5) 12.04969 45.18634 39.76398 

 
c. Compute the chi-squared statistic using the same model (recessive, semi-

dominant or dominant) that you used in 2b.  Report the p-value (you can use 
the same websites we used in class or R). How does this compare to the p-
value for VKORC1 in the quantitative GWAS? What can you say about 
quantitative GWAS versus case/control GWAS? Explain. 

 
For this question, you could use either a recessive model (combining AG and GG genotypes) or 
a semi-dominant model. 
 
Semi-dominant model: 
The chi-squared value is 27.063 with 2 degrees of freedom and the p-value is 1.329e-06.  [ Used 
R: chisq.test(matrix(c(0,24,40,20,51,26), nrow=3), correct=FALSE) ].   
 
Recessive model: 
Observed: AA AG/GG  
TRUE  0 64  
FALSE 20 77  

 
The chi-squared value is 15.068 with 1 degree of freedom and the p-value is 1.037e-04. [ Used 
R: chisq.test(matrix(c(0,64,20,77), nrow=2), correct=FALSE) ].   
 
 
This is a bigger p-value than the p-value from the quantitative GWAS (8.45e-14), which suggests 
that the data is less significant. This is expected since a warfarin dose can be very close to 
5 or very far away from 5. In contrast, when we are predicting the warfarin dose with the 
quantitative regression model, we expect that our prediction is closer to the actual dose. 
 
*The astute observer will notice that there was nothing “genome-wide” about this. We 
actually performed 1/500,000th of a typical GWAS. :) 


