Linkage

Linkage, part 1 - Allele Frequencies

rs12426597

Linkage, part 1 - Haplotypes

SNP order: rs878198, rs6447271, rs12426597		
Haplotypes	Obs Freq	
Expected		
AA,AA,CC	0.0002	0
AA,AA,CT	0.0008	0
AA,AA,TT	0.0008	0
AA,AG,CC	0.0047	0
AA,AG,CT	0.0185	0
AA,AG,TT	0.0181	0
AA,GG,CC	0.0268	0
AA,GG,CT	$\mathbf{0 . 1 0 5 0}$	$\mathbf{0 . 0 2 7 0}$
AA,GG,TT	$\mathbf{0 . 1 0 2 8}$	$\mathbf{0 . 1 6 2 2}$
AC,AA,CC	0.0004	0
AC,AA,CT	0.0015	0
AC,AA,TT	0.0014	0
AC,AG,CC	0.0085	0
AC,AG,CT	$\mathbf{0 . 0 3 3 2}$	$\mathbf{0 . 0 8 1 1}$
AC,AG,TT	$\mathbf{0 . 0 3 2 5}$	$\mathbf{0 . 0 2 7 0}$
AC,GG,CC	$\mathbf{0 . 0 4 8 1}$	$\mathbf{0 . 0 8 1 1}$
AC,GG,CT	$\mathbf{0 . 1 8 8 4}$	$\mathbf{0 . 3 5 1 4}$
AC,GG,TT	$\mathbf{0 . 1 8 4 5}$	$\mathbf{0 . 1 3 5 1}$
AC,AA,CC	0.0002	0
CC,AA,CT	0.0007	0
CC,AA,TT	0.0006	0
CC,AG,CC	0.0038	0
CC,AG,CT	0.0149	$\mathbf{0 . 0 5 4 1}$
CC,AG,TT	$\mathbf{0 . 0 1 4 6}$	$\mathbf{0 . 0 2 1 6}$
CC,GG,CC	0.0846	$\mathbf{0 . 0 8 2 8}$
CC,GG,CT		$\mathbf{0 . 0 2 7 0}$
CC,GG,TT		0

Linkage, part 2 - Allele Frequencies

rs10757274

Genetic Linkage 2

Linkage, part 2 - Haplotypes

SNP order: rs1537375 rs1333049, rs10757274

	Haplotypes	Expected	Obs Freq	
	CC,CC,AA		0.0180	0
CCG	CC,CC,AG		0.0326	0.025
CCG	CC,CC,GG		0.0147	0.225
	CC,CG,AA		0.0398	0
	CC,CG,AG		0.0720	0.025
	CC,CG,GG		0.0326	0.025
	CC,GG,AA		0.0220	0
	CC,GG,AG		0.0398	0
	CC,GG,GG		0.0180	0
	CT,CC,AA		0.0310	0
	CT,CC,AG		0.0561	0.025
	CT,CC,GG		0.0254	0
TGA	CT,CG,AA		0.0685	0
	CT,CG,AG		0.1239	0.350
CCG	CT,CG,GG		0.0561	0
	CT,GG,AA		0.0378	0.075
	CT,GG,AG		0.0685	0.025
	CT,GG,GG		0.0310	0
	CT,CC,AA		0.0133	0
	TT,CC,AG		0.0241	0
	TT,CC,GG		0.0109	0
	TT,CG,AA		0.0295	0
	TT,CG,AG		0.0533	0
TGA	TT,CG,GG		0.0241	0
TGA	TT,GG,AA		0.0163	0.225
	TT,GG,AG		0.0295	0
	TT,GG,GG		0.0133	0

Stephanie M. Fullerton • Andrew G. Clark
Kenneth M. Weiss • Scott L. Taylor • Jari H. Stengård Veikko Salomaa - Eric Boerwinkle
Deborah A. Nickerson
Sequence polymorphism at the human apolipoprotein All gene (APOA2): unexpected deficit of variation in an African-American sample

Sequence APOA2 in 72 people Look at patterns of polymorphisms

Chimp		Site no. ${ }^{\text {a }}$														
SNP	Sequence			1	1	2	2	2	2	2	2	2	3	3	3	
haplotype	haplotype	1	2	8	2	6	0	0	1	2	8	8	9	0	0	2
no.	no.	5	0	7	1	7	3	8	1	3	1	6	9	2	9	0
		5	1	2	8	1	8	5	5	3	8	8	4	7	2	8
		C	G	T	G	?	G	C	G	C	C	C	C	T	A	G

Find polymorphisms at these positions.
Reference sequence is listed.

Chimp		Site no. ${ }^{\text {a }}$															Sample				
SNP	Sequence			1	1	2	2	2	2	2	2	2	3	3	3						
haplotype	haplotype	1	2	8	2	6	0	0	1	2	8	8	9	0	0	2					
no.	no.	5	0	7	1	7	3	8	1	3	1	6	9	2	9	0					
		5	1	2	8	1	8	5	5	3	8	8	4	7	2	8					
		C	G	T	G	?	G	C	G	C	C	C	C	T	A	G	J	N	R	T	
Core re-sequenced samples																					
	S9	G		C		20	-		A	\bigcirc	-	-	-	-	-	-					1

Sequence of the first chromosome.
Circle is same as reference.

Chimp		Site no. ${ }^{\text {a }}$															Sample			
SNP haplotype no.	Sequence haplotype no.			1	1	2	2	2	2	2	2	2	3	3	3					
		1	2	8	2	6	0	0	1	2	8	8	9	0	0	2				
		5	0	7	1	7	3	8	1	3	1	6	9	2	9	0				
		5	1	2	8	1	8	5	5	3	8	8	4	7	2	8				
		C	G	T	G	?	G	C	G	C	C	C	C	T	A	G	J	N	R	T
Core re-sequenced samples																				
	S9	G		C		20	-		A	-	-	-	-	-	-	-	0	0	1	1
	S9a	G		C		18	-		A	-	-	-	-	-	-	-	0	1	0	1
	S2	G		C		19	-		-	-	-	-	-	-	-	-	15	10	12	37
	S2a	G		C		20	-		-	-	-	-	-	-	-	-	0	2	3	5
	S2b	G		C		18	-		-	-	-	-	-	-	-	-	0	2	1	3
	S2c	G		C		21	-		-	-	-	-	-	-	-	-	1	0	1	2
	S1d	G		\bullet		19	-		-	-	-	-	-	-	-	-	5	0	0	5
	S1	G		\bullet		16	-		-	-	-	-	-	-	\bullet	-	17	19	14	50
	S1a	G		-		18	-		-	-	-	-	-	-	-	-	5	1	0	6
	S1b	G		-		15	-		-	-	-	-	-	-	-	-	2	0	0	2
	S1c	G		-		17	-		-	-	-	-	-	-	-	-	1	0	0	1
	S6	-		-		16	-		-	-	-	-	-	-	-	-	1	2	0	3
	S5	-		-		14	-		-	T	-	A	-	-	-	-	1	4	2	7
	S3	-		-		14	-		-	T	-	A	-	C	G	A	0	3	6	9
	S7	-		-		13	C		-	-	T	-	-	\bullet	\bullet	-	0	2	0	2
	S8	-		\bullet		13	C		-	-	T	-	-	C	G	-	0	1	1	2
	S4	-		-		13	C		-	-	T	-	T	C	G	-	0	1	6	7
	S4a	?		\bullet		14	C		-	-	T	-	T	C	G	-	0	0	1	1

Chimp		Site no. ${ }^{\text {a }}$															mp				
SNP haplotype no.	Sequence haplotype no.	$\begin{aligned} & 1 \\ & 5 \\ & 5 \\ & \mathrm{C} \end{aligned}$		$\begin{aligned} & 1 \\ & 8 \\ & 7 \\ & 2 \\ & \text { T } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 8 \\ & \mathrm{G} \end{aligned}$	2671$?$	$\begin{aligned} & 2 \\ & 0 \\ & 3 \\ & 8 \\ & \mathrm{G} \end{aligned}$	2085C	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 5 \\ & G \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & \mathrm{C} \end{aligned}$	$\begin{array}{\|l} 2 \\ 8 \\ 1 \\ 8 \\ 8 \\ C \end{array}$	$\begin{aligned} & 3 \\ & 9 \\ & 9 \\ & 4 \\ & \hline \mathrm{C} \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 2 \\ & 7 \\ & \mathrm{~T} \end{aligned}$	3092A	$\begin{aligned} & 2 \\ & 0 \\ & 8 \\ & \mathrm{G} \end{aligned}$	J		N	R	T	
Core re-sequenced samples																					
	S9	G			C		20	-		A	-	-	-	-	-	-		0	0	1	1
	S9a	G		C		18	-		A	-	-	-	-	-	-		0	1	0	1	
	S2	G		C		19	-		-	-	-	-	-	-	-		15	10	12	37	
	S2a	G		C		20	-		-	-	-	-	-	-	-		0	2	3	5	
	S2b	G		C		18	-		-	-	-	-	-	-	-		0	2	1	3	
	S2c	G		C		21	-		-	-	-	-	-	-	-		1	0	1	2	
	S1d	G		-		19	-		-	-	-	-	-	-	-		5	0	0	5	
	S1	G		-		16	-		-	-	-	-	-	-	-		17	19	14	50	
	S1a	G		-		18	-		-	-	-	-	-	-	-		5	1	0	6	
	S1b	G		-		15	-		-	-	-	-	-	-	-		2	0	0	2	
	S1c	G		-		17	-		-	-	-	-	-	-	-		1	0	0	1	
	S6	-		-		16	-		-	-	-	-	-	-	-		1	2	0	3	
	S5	-		-		14	-		-	T	-	-	-	-	-		1	4	2	7	
	S3	-		-		14	-		-	T	-	-	C	G	A		0	3	6	9	
	S7	-		-		13	C		-	-	T	-	-	-	-		0	2	0	2	
	S8	-		-		13	C		-	-	T	\bigcirc	C	G	-		0	1	1	2	
	S4	-		-		13	C		-	-	T	T	C	G	-		0	1	6	7	
	S4a	?		-		14	C		-	-	T	T	C	G	-		0	0	1	1	

Haplotype Frequencies

\[

\]

Fill out this table.
X 11 is number of times that haplotype is seen.

	2818 C	2818 T	
3027 T	X11	X21	\# 3027 T alleles
3027 C	X12	x22	\#3027 C alleles
	\# 2818 C Allele	\#2818 T allele	

	2818 C	2818 T	
3027 T	$125 / 146$	$2 / 146$	$127 / 146$ T alleles
3027	$9 / 146$	$10 / 146$	$19 / 146$ C alleles
C	$134 / 146$ C Allele	$12 / 146$ T allele	

Convert to fractions

	2818 C	2818 T	
3027 T	.86	.013	.87 T alleles
3027	.061	.068	.13 C C

Disequilibrium Coefficient $D_{A B}$

$$
\begin{aligned}
D_{A B} & =p_{A B}-p_{A} p_{B} \\
p_{A B} & =p_{A} p_{B}+D_{A B} \\
p_{A b} & =p_{A} p_{b}-D_{A B} \\
p_{a B} & =p_{a} p_{B}-D_{A B} \\
p_{a b} & =p_{a} p_{b}+D_{A B}
\end{aligned}
$$

Calculate D_{AB}

$$
\begin{aligned}
\mathrm{D}_{\mathrm{AB}} & =\mathrm{P}_{\mathrm{AB}}-\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{B}} \\
& =.86-(.87)(.92) \\
& =.86-.80 \\
& =.06
\end{aligned}
$$

$D_{A B}$ is hard to interpret

- Sign is arbitrary ...
${ }^{\circ}$ A common convention is to set A, B to be the common allele and a, b to be the rare allele
- Range depends on allele frequencies
- Hard to compare between markers

R - correlation coefficient

$$
\mathrm{R}=
$$

$$
\frac{D_{A B}}{\operatorname{SQR}\left(P_{A}\right.} \times \frac{\left.P_{a} \times P_{B} \times P_{b}\right)}{}
$$

Calculate R

$$
\begin{aligned}
\mathrm{R} & =\mathrm{D}_{\mathrm{AB}} / \operatorname{SQR}\left(\mathrm{P}_{\mathrm{A}} \mathrm{P}_{\mathrm{a}} P_{B} P_{b}\right) \\
& =.06 / \operatorname{SQR}(.87 * .13 * .92 * .08) \\
& =.06 / \operatorname{SQR}\left(7.2 \times 10^{-3}\right) \\
& =.06 / .085=.706 \\
\mathrm{R}^{2} & =.497
\end{aligned}
$$

More on $\mathbf{r}^{\mathbf{2}}$

- $r^{2}=1$ implies the markers provide exactly the same information
- The measure preferred by population geneticists
- Measures loss in efficiency when marker A is replaced with marker B in an association study
- With some simplifying assumptions (e.g. see Pritchard and Przeworski, 2001)

Summarizing Disequilibrium

Comparing Populations

LD extends further in CEPH and the Han/Japanese than in the Yoruba

GWAS readings

**How to Interpret a Genome-wide Association Study
http://stanford.edu/class/gene210/files/readings/Pearson JAMA 2008.pdf Finding the missing heritability of complex diseases http://stanford.edu/class/gene210/files/readings/Manolio Nature 2009.pdf How to Use an Article About Genetic Association: A:
http://stanford.edu/class/gene210/files/readings/GWAS1 JAMA 2009.pdf How to Use an Article About Genetic Association: B: http://stanford.edu/class/gene210/files/readings/GWAS2 JAMA 2009.pdf How to Use an Article About Genetic Association: C http://stanford.edu/class/gene210/files/readings/GWAS3 JAMA 2009.pdf

Published Genome-Wide Associations through 07/2012
Published GWA at $\mathrm{p} \leq 5 \times 10^{-8}$ for 18 trait categories

ARTICLE PREVIEW

view full access options ．

NATURE｜ARTICLE
日本語要約

Seventy－five genetic loci influencing the human red blood cell

Pim van der Harst，Weihua Zhang，Irene Mateo Leach，Augusto Rendon，Niek Verweij， Joban Sehmi，Dirk S．Paul，Ulrich Elling，Hooman Allayee，Xinzhong Li，Aparna Radhakrishnan，Sian－Tsung Tan，Katrin Voss，Christian X．Weichenberger，Cornelis A． Albers，Abtehale Al－Hussani，Folkert W．Asselbergs，Marina Ciullo，Fabrice Danjou， Christian Dina，Tõnu Esko，David M．Evans，Lude Franke，Martin Gögele，Jaana Hartiala

```
+ et al.
```

Affiliations｜Contributions｜Corresponding authors

Nature 492，369－375（20 December 2012）｜doi：10．1038／nature11677
Received 06 February 2012 ｜Accepted 15 October 2012 ｜Published online 05 December 2012
｜Corrected online 19 December 2012

Colorectal cancer

1057 cases
 960 controls

550K SNPs

Colorectal cancer data from rs6983267

Table 1 Risk of colorectal neoplasia associated with the 8 q 24 SNP rs6983267

960 controls

Table 1 Risk of colorectal neoplasia associated with the $8 q 24$ SNP rs6983267

Panel	Group	Total	Genotype			Frequency	
			GG	GT	TT	G	T
A	All affected individuals	1,027 ${ }^{\text {a }}$	352	486	189	0.579	0.421
	Cancers only	620	202	302	116	0.569	0.431
	Adenomas only	$407^{\text {a }}$	150	184	73	0.595	0.405
	Controls	960	235	471	254	0.490	0.510
-	Calarantal mammam	126.1	1201	O216	011	nean	O110

Cancer: 0.57G 0.43T

Are these different?

Chi squared

Chi squared

http://www.graphpad.com/quickcalcs/chisquared1.cfm

1. Select category
2. Choose calculator
3. Enter data
4. View res

Compare observed and expected frequencies

This calculator compares observed and expected frequencies with the chi-square test. Read an example with explanation.

Note that the chi-square test is more commonly used in a very different situation -- to analyze a contingency table. This is appropriate when you wish to compare two or more groups, and the outcome variable is categorical. For example, compare number of patients with postoperative infections after two kinds of operations. If you need to analyze a contingency table, do not use this table. If you have two groups (rows) and two outcomes, use this calculator. If your table is larger, try the free demos of GraphPad InStat (basic statistics only) and GraphPad Prism (statistics, nonlinear regression and scientific graphics).

Enter the names of the categories into the first column (optional). Enter the actual number of objects or individuals or events observed in the second column. Then enter the expected number, fraction or percent expected in the third column.

1. Choose data entry format	2. How will you enter the expected values?
- Enter up to 20 categories (rows). Actual number expected Enter or paste up to 2000 categories (rows). Percent expected Caution: Changing format will erase your data. 3. Enter data 4. View the results	

Category	Observed \# Expected
$1: \square$	
$2: \square$	

Calculate now
Clear the form

Chi squared

http://www.graphpad.com/quickcalcs/chisquared1.cfm

1. Choose data entry format
© Enter up to 20 categories (rows).

- Enter or paste up to 2000 categories (rows).

Caution: Changing format will erase your data.
3. Enter data
Observed \# Expected

1: G alleles	1190	.49
2: T alleles	864	.51

3:

2. How will you enter the expected values?

- Actual number expected
- Percent expected
- Fraction expected

4. View the results

Calculate now

Clear the form

Chi squared = 31 P values $=10^{-7}$

Stuart's genotype

browse raw data

Showing raw data for SNP rs6983267, which is on chromosome 8.

| Gene | Position | SNP | Versions | stuart kim's Genotype |
| :--- | :--- | :--- | :--- | :--- | :--- |
| H intergenic | 128482487 | rs6983267 | G or T | GG |

Homozygous bad allele \square

Other models

Table 1 Risk of colorectal neoplasia associated with the 8 q 24 SNP

Panel	Group	Total	Genotype		
			GG	GT	TT
A	All affected individuals	$1,027^{\text {a }}$	352	486	189
	Cancers only	620	202	302	116
	Adenomas only	$407^{\text {a }}$	150	184	73
	Controls	960	235	471	254
-	anlarantal mammam	136.1	1204	O216	011

Dominant: Assume G is dominant. GG or GT vs TT

	GG or GT	TT
Cases	838	189
Controls	706	254

Other models

Table 1 Risk of colorectal neoplasia associated with the $8 q 24$ SNP

Panel	Group	Total	Genotype		
			GG	GT	TT
A	All affected individuals	1,027 ${ }^{\text {a }}$	352	486	189
	Cancers only	620	202	302	116
	Adenomas only	$407^{\text {a }}$	150	184	73
	Controls	960	235	471	254
-	Calarmatal manmam	A 26.1	1201	2716	$\bigcirc 11$

Recessive:
Assume G is recessive. GG vs GT or TT

	GG	GT or TT
Cases	352	675
Controls	235	725

Other models

Table 1 Risk of colorectal neoplasia associated with the 8 q 24 SNP

Panel	Group	Total	Genotype		
			GG	GT	TT
A	All affected individuals	1,027 ${ }^{\text {a }}$	352	486	189
	Cancers only	620	202	302	116
	Adenomas only	$407^{\text {a }}$	150	184	73
	Controls	960	235	471	254
-	Calarnatal manmam	1351	1224	$\bigcirc 316$	011

```
additive: GG > GT > TT
    Do linear regression 3 genotype x 2 groups
```


How different is this SNP in the cases versus the controls?

Allelic odds ratio: ratio of the allele ratios in the cases divided by the allele ratios in the controls

Cancer . $57 \mathrm{G} / .43 \mathrm{~T}=1.32$

Control . 49 G/ . $51 \mathrm{~T}=0.96$
Allelic Odds Ratio $=1.32 / 0.96=1.37$

How different is this SNP in the cases versus everyone?

Allelic odds ratio*: ratio of the allele ratios in the cases divided by the allele ratio in the entire population
(need allele ratio from entire population to do this)

Likelihood ratio: What is the likelihood of seeing a genotype given the disease compared to the likelihood of seeing the genotype given no disease?
(need data from entire population to do this. We can do this in the class GWAS. For cancer vs controls, the two groups were separate and so we do not know the genotype frequencies of the population as a whole.)

Increased Risk: What is the likelihood of seeing a trait given a genotype compared to overall likelihood of seeing the trait in the population?
(need data from entire population to do this. We can do this in the class GWAS. For cancer vs controls, the two groups were separate and so we do not know the genotype frequencies of the population as a whole.)

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at P < .05."

- $P=.05$ means that there is a 5% chance for this to occur randomly.
- If you try 100 times, you will get about 5 hits.
- If you try 547,647 times, you should expect $547,647 \times .05=27,382$ hits.
- So 27,673 (observed) is about the same as one would randomly expect.

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at $\mathrm{P}<.05$."

- Here, have 547,647 SNPs = \# hypotheses
- False discover rate = q = p x \# hypotheses. This is called the Bonferroni correction.
- Want $q=.05$. This means a positive SNP has a .05 likelihood of rising by chance.
- At $q=.05, p=.05 / 547,647=.91 \times 10^{-7}$
- This is the p value cutoff used in the paper.

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at $\mathrm{P}<.05$."

- The Bonferroni correction is too conservative. It assumes that all of the tests are independent.
- But the SNPs are linked in haplotype blocks, so there really are less independent hypotheses than SNPs.
- Another way to correct is to permute the data many times, and see how many times a SNP comes up in the permuted data at a particular threshold.

SNPedia

The SNPedia website http://www.snpedia.com/index.php/SNPedia

A thank you from SNPedia http://snpedia.blogspot.com/2012/12/o-come-all-ye-faithful.html

Class website for SNPedia http://stanford.edu/class/gene210/web/html/projects.

List of last years write-ups
http://stanford.edu/class/gene210/archive/2012/projects 2012.html
How to write up a SNPedia entry
http://stanford.edu/class/gene210/web/html/snpedia.html

SNPedia

Summarize the trait
Summarize the study
How large was the cohort?
How strong was the p-value?
What was the OR, likelihood ratio or increased risk?
Which population?
What is known about the SNP?
Associated genes?
Protein coding?
Allele frequency?
Does knowledge of the SNP affect diagnosis or treatment?

Class GWAS

Go to genotation.stanford.edu Go to "traits", then "GWAS"
Look up your SNPs
Fill out the table
Submit information

Class GWAS

Class should split into ~ 10 groups
Each group should calculate association of all 5 SNPs with one trait. Do a chi-squared test and write down the p value.
We will make a table from the class results

Class GWAS

Which SNP is best associated with which trait?
Is this significant? What should be the significance cut off?
Are there other significant associations?
What might cause the other significant associations?

Class GWAS

Split into groups of 4-5
Each group should select on trait/SNP
Calculate:
allelic odds ratio
likelihood ratio

