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Chromosome map of disease-associated regions




“GWAS have so far identified only a small fraction of the
heritability of common diseases, so the ability to make
meaningful predictions is still quite limited”

Francis Collins, Director of the NIH, Nature, April 2010

Heritability Individuals studied Heritability explained

Coronary artery 40% 86995 10%
disease

Type 2 Diabetes 40% 47117 10%
BMI 50% 249796 3%
Blood pressure 50% 34433 1%
Circulating lipids 50% 100000 25%
Height 80% 183727 12.5%

Where is the missing heritability?



Disease starts at a cellular level
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Understanding the influence of genetics on cells will
improve our ability to predict disease risk



Genetics of gene expression
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Insight into how genetic variants influence
transcription in different tissues,
individuals and populations
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Genetic association can pinpoint regulatory haplotypes

Population Sample
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We can identify genetic variants impacting
gene expression (eQTLs)



THE LANDSCAPE OF REGULATORY VARIATION
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Location of genetic variants by the gene’s whose expression they impact



ADVANTAGES TO STUDYING GENETICS OF
GENE EXPRESSION

Can rapidly evaluate 1000s of quantitative traits

Power to generalize patterns underlying classes of effects
Can easily transform or perturb the system

Direct connection to cellular mechanism!



Genetic differences in gene expression can
identify candidate genes for gwas variants

Disease / trait study | Implicated eQTL genes

Asthma24 ORMDL3

Blood lipid levels>9.65 SORT1, PPP1R3B and TTC39B

Body mass index3 NEGR1, ZC3H4, TMEM160, MTCH2, NDUFS3, GTF3A,

ADCY3, APOBA48R, SH2B1, TUFM, GPRC5B, I1QCK,
SLC39A8, SULT1A1 and SULT1A2

Breast Cancer®t RRP1B
Celiac disease? MMEL1, NSF, PARK7, PLEK, TAGAP, RRP1, UBE2L3 and
ZMIZ1

Crohn’s disease®” (add PTGER4, CARD9, ERAP2 and TNFSF11
Franke reference, NG

2010)

Fat distribution® GRB14

Height58.68 Multiple genes implicated

Kidney-aging®® MMP20

Migraine* MTDH

Multiple diseases’® CDKNA2A, CDKNA2B and ANRIL

Osteoporosis-related>’2  GPR177, MEF2C, FOXC2, IBSP, TBC1D8, OSBPLI1A,
RAP1A and TNFRSF11B

Parkinson’s%73 MAPT, LRRC37A, HLA-DRA, HLA-DQA2 and HLA-DRB5

Psoriasis® SDC4, SYS1, DBNDD2, PIGT and RPS26*

QRS duration and cardiac TKT, CDKNZ1A and C6orf204

ventricular conductions?

Type 2 diabetes®”."4 FADS1, FADS2, KLF14, CCNE2, IRS1, JAZF1 and
CAMK1D

eQTL correlation helps pinpoint implicated genes and mode of effect
Montgomery, Nat Rev Genetics, 2011



What are my asthma variants doing?

In the subset of individuals for whom expression data are available,

the T nucleotide allele at rs7216389 (the marker most strongly associated with
disease in the combined GWA analysis) has a frequency of 62% amongst asthmatics
compared to 52% in non-asthmatics (P = 0.005 in this sample).

Moffatt, Nature, 2007

rs7216389 / ILMN_1662174 / ENSGO0000172057 / ORMDL3
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eQTLs are more likely to be trait SNPs

eQTL Distribution: P < 10°® eQTL Distribution: P < 107
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GWA SNPs more likely to be near genes

eQTL Distribution: P < 10°® eQTL Distribution: P < 10°

eQTL Distribution: P < 107
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How are eQTLs detected?

Reported as the number of genes with significant
heritability, linkage or association compared to an FDR

Example 1:
“Of the total set of genes, 2,340 were found to be expressed, of which 31% had significant heritability
when a false-discovery rate of 0.05 was used.”

- Monks, AJHG, 75(6): 1094—1105. 2004

Example 2:
“Applying this genome-wide threshold to 3,554 scans we would expect only 3.5 genome scans to show
any linkage evidence with a P-value this extreme by chance. Instead we found 142 expression
phenotypes with evidence for linkage beyond the P-value threshold, and in some cases far beyond, so
we conclude that false-positive linkage findings are at most a small fraction of the significant results.”

- Morley, Nature, 430(7001): 743-747. 2004

Example 3:
“We detected 293, 274, 326 and 363 cis associations for CEU, CHB, JPT and YRI,
respectively, corresponding to 783 distinct genes and an FDR of 4-5%.”

- Stranger, Nat Genetics, 39, 1217-1224. 2007



eQTL definition depends on false discovery
definition

FDR

IMPORTANT: Understand the relationship
Between false positive rate and eQTLs
reported!

Number of
Genes
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Permutation threshold



Discovery of eQTLs depends on:

(A)Biological factors
(B) Technological factors



BIOLOGICAL FACTORS
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Multiple tissue studies

Determining how ubiquitous eQTL signals (and potential
disease mechanism) are in different tissues.

i.e. if | find an eQTL in fat will it be informative of
mechanism underlying disease risk for a disease based in
muscle.



Cell type-specific and cell type-shared gene associations

No. of cell types with gene association

Answer: probably not

(0.001 permutation threshold)

Fibroblasts

LCLs

T—cells

86

86

86

cell type

69-80% of cis associations are
cell type-specific

Dimas et al Science 2009

50% specific (adipose and blood)

Emilsson et al Nature 2008

>50% specific (cortical tissue and
peripheral blood)

Heinzen et al PloS Biology 2008

All estimates depend on eQTL definition and method for assessing sharing



SHARED EFFECTS BUT WEAKER?

10e-3 vs 10e-2 permutation threshold
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Nica et al., PloS Genetics, 2011
Issues of power may still dominate robust estimates of eQTL sharing.



What are my migraine variants doing
in different tissues?

We identified the minor allele of rs1835740 on chromosome 8g22.1 to be
associated with migraine (P = 5.38 x 1072, odds ratio = 1.23, 95% Cl 1.150-1.324)
in @ genome-wide association study of 2,731 migraine cases ascertained from
three European headache clinics and 10,747 population-matched controls. In an
expression gquantitative trait study in lymphoblastoid cell lines, transcript levels of
the MTDH were found to have a significant correlation to rs1835740 (P = 3.96 x
10>, permuted threshold for genome-wide significance 7.7 x 107>).

Anttila, Nature Genetics, 2011

rs1835740 /ILMN_1810838 / ENSGO00001476849 / MTDH
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Predictive value of gene expression dependent on proximity to
pathological tissue

C Expression and disease signal overlap but expression effect is different in different tissues

We have limited understanding of the Type | and Il error rate

However, a lack of sharing may allow us to discover the pathological tissue
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Development-specific studies

Determining how eQTLs behave over time

i.e. if | find an eQTL in pluripotent cell state will it be
informative of mechanism underlying an differentiated
state.



Less eQTLs in older individuals
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More interruption by somatic or environmental effects?

Vinuela A, Genome Research 20(7):929-37. 2010



Multiple Population studies

Determining how ubiquitous eQTL signals (and
potential disease mechanism) are in different

populations.

i.e. if | find an eQTL in Europeans will it be informative
of mechanism underlying disease risk for a disease
found in Chinese.



NOT ALL EQTLS SHARED ACROSS POPULATIONS

“We have reported that many genes showing
cis associations at the 0.001 permutation
threshold are shared (about 37%) in at least
two populations ... In 95-97% of the shared
associations, the direction of the allelic effect
was the same across populations, and the
discordant 3—5% was of the same order as the
FDR.”

Stranger, Nat Genetics, 2007

If we know the etiology of a disease
can we predict its population frequency
from cellular models of that disease?
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What are my BMI variants doing in
different populations?

re713586 / ILMN_1676893 / ENSGO0000138031 / ADCY3
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0.06% of BMI variance

Speliotes, Nature Genetics,
2010



Multiple population study designs:
Recombination mapping can get at
causal variants

Localization Success Rate of Balanced Designs Distribution of Best Design
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Multiple populations do well at mapping causal variants; however their design results in
a reduction of power
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Finding causal variants

Gene
sharing
across pops
from1 -8
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Admixed populations

* Challenges: Loss of power if local ancestry not
known or inflation in significance if frequency
differences are large and effect is trans-acting.

Eur (red): mean 3.0 Afr (blue): mean 4.0

If mean expression invariant to genotype then
allele frequency differences will create false association

Solution: Add local ancestry as a covariate



Environment studies

Determining how eQTLs behave under stimulus

i.e. if | find an eQTL in resting state will it be
informative of mechanism underlying an
responsive state.



Answer: not much difference to date

“We carried out large-scale induction experiments
using primary human bone cells derived from
unrelated donors of Swedish origin treated with 18
different stimuli (7 treatments and 2 controls, each
assessed at 2 time points). ... We found that 93% of
cis-eQTLs at 1% FDR were observed in at least one
additional treatment, and in fact, on average, only
1.4% of the cis-eQTLs were considered as
treatment-specific at high confidence. “

- Grundberg PloS Genetics 7(1). 2011



Discovery of eQTL depends on technology

Gene expression technology
PCR-based, array-based, sequencing-based

Genotyping technology
array-based, sequencing-based

Sample size

More individuals and/or families yields more power to detect
association with particular effect sizes. (Lowers FDR). Early studies used 18-30
families or 45-60 unrelated individuals.



THE biases we don’t know about:
Hidden factors can cause false associations

Hidden technical and biological variables. i.e.
oopulation, sex, date of processing

However, correcting these factors can remove
true signals (i.e. master regulators)



Methods to correct hidden factors

e Factor analysis on 40 global factors has tripled eQTL

discovery.
- Stegle, PLoS Computational Biology, 2010

_Standard eQTL mapping with covariates and hidden factors
Standard eQTL mapping with covariates >
{ Standard eQTL mapping

SNP Age Environment Interactions
(Disease state Gender Temperature ,g;’:‘:‘;‘nfmn
Tissue) Environment Concentration
Expression] . | Geno- Known Hldden
- Wtype factors factors others
z.
Y“)(S Y®)(X

* Surrogate variable analysis, has increased by 20% eQTL

discovery
- Leek, PLoS Genetics, 2007



Why are biological and technological contexts
important for understanding eQTL role in disease?

a Expression and disease signal do not overlap Vlsi;ease Vs'iqne;i'
] pressioﬁ signal (tissue 1)
e B ion signal (tissue 2)

=

Recombination hot spot

b Expression and disease signal overlap but marker density is low

| m—

¢ Expression and disease signal overlap but expression effect is different in different tissues




eQTL data can open up new biology

* Without traits and disease we can find
variants influencing expression level.

 We can speculate and investigate what these
effects might do.



What are my TCF3 variants doing

Cell, 2008 Oct B4 270111 71-53.

Tcf3 governs stem cell features and represses cell fate determination in skin.

Hoguyen H, Bendl M, Fuchs E.

Howyard Hughes Medical Institute, Department of Mammalian Cell Biology and Development, The REockefeller University, 1230 York &venue, Box 300, Mew Yark,
P 0029, US4,

Abstract

Many stem cells (SCs) respond to Wit signaling, but whether beta-catenin's DMNA binding partners, the Tefs, play a rale in SCs in the
absence of Wnts, i1s unknown. In adult skin, quiescent multipotent progenitors express Tef3 and caommit to a hair cell fate in response
to Wnt signaling. WWe find that embryonic skin progenitars also express Tofa. Using an inducible system in mice, we show that upon
Tefa reactivation, committed epidermal cells induce genes associated with an undiferentiated, Wnt-inhibited state and Tcf3 promotes a
transcriptional pragram shared by embryanic and postnatal SCs. Further, Tef3-repressed genes include transcriptional requlatars of
the epidermal, sebaceous gland and hair fallicle differentiation programs, and caorrespondingly, all three terminal differentiation
pathways are suppressed when Tefd is induced postnatally. These data suggest that in the absence of Whnt signals, Tefa may function
in skin SCs to maintain an undifferentiated state and, through Wnt signaling, directs these cells along the hair lineage.

dbSNP Genotype Reference Alternate Gene Rho P-value
350146 CT C T TCF3 0.545 0.00000687




Next generation sequencing has increased
our ability to survey the transcriptome.
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What is RNA-seq

High-throughput sequencing of cDNA to
understand/quantify a sample’s gene expression profile
Output: millions of short, single or paired-end sequences (reads)

pre-mRNA

MRNA

Short read is split by
intron when aligning
to reference Genome T -_,J



Genetics of gene expression using
RNA-Seq

a Gene-level QTL (TSP50)
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Increased resolution of transcriptome through RNA- sequencing

Hybrid transcripts

Quantification Alternative splicing Fusion genes Transcript termination
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RNA-seq provides resolution of more QTLs

RNA-sequencing in 60 Europeans (HapMap genotypes; LCLs)

Found 2x more expression Quantitative Trait Loci (eQTLs) and...

Exon-eQTLs UTR Length-QTLs Splicing eQTLs
G
First exon Second exon Middle exon  Last
Last Last 2
3 b
Second First o ?
0.015 econd 0.0030 ° §
z First Middle
=c . Second ; w Haplotype A B Haplotype A
%% 0.010 _ £ YT Toocost (TN 11T W HliHseoos1
8 § 0.0015 Middle ® = Haplotype B Haplotype B
3 § 0.005 i
,5 S ] &
@«
0.000 0.0000 - o
0.01 eQTLs 0.001 eQTLs ‘
(/] 2 4 ]

Rare eQTLs with allele specific expression-based approaches



Advantages of ASE

e Test within an individual allelic imbalance,
given one has sufficient reads.




Looking for rare regulatory haplotypes

SNP Location

—23.86Mb
——23.88Mb

O AMAAN

ATCCATGGATCCCGTGAG CAGGTAG CCTCTAGTACG

ATGGATCGATCGCGGGATCAGCTAGCATCATGTACG —.—
@ Lo B oo O T
ATCGATCGATCGCGGGATCAGCTAGCATCATGTACG .
M “ ASE variant

‘ Causal regulatory
mutation

Can measure extent of haplotype homozygosity
since shared ASE assumed to have common genealogy

N




Evidence of recent and rare eQTLs

B ASE (n=2)

W ASE (n=3) Where > 6 hets
B ASE (n=4)
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|
L ]

ASE versus non-ASE
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ASE versus ASE

When ASE individuals compared, we observed longer tracts of
haplotype homozygosity



Can we find the recent and rare
causal regulatory variants?

POOL OF INDIVIDUALS Putative regulatory SNP
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More putative regulatory SNPs found
for real ASE versus non-ASE

20

15

10

Number of prSNPs detected

T
Real ASE

T
Non-ASE

Mann Whitney
p<2e-16

We see 1 more prSNP on average in real ASE versus non-ASE

Montgomery, PLoS Genetics, 2011



% predictions
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0.04

Putative regulatory SNPs
are enriched around TSS

Location of prSNPs with respect to the transcription start site

Upstream

— Real prSNP predictions
---- Random prSNP predictions
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EPISTATIC EFFECTS

* Evaluate outcome through joint assessment of
genome and transcriptome

cis gene expression
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23.3% (9022 of 38645) nonsynonymous sites where ASE can be detected are significant;
46.2% of variants DE in 1 indiv.




Compound inheritance of regulatory and
coding polymorphism causes disease

Compound inheritance of a low-frequency regulatory

SNP and a rare null mutation in exon-junction complex
subunit RBEM8A causes TAR syndrome

The exon-junction complex (EJC) performs essential RNA processing tasks1-5.
Here, we describe the first human disorder, thrombocytopenia with absent radii
(TAR)6, caused by deficiency in one of the four EJC subunits.

The thrombocytopenia with absent radii (TAR) syndrome is characterized by a
reduction in the number of platelets (the cells that make blood clot)

Albers, Nature Genetics, 2012



Non-synonymous variants more often
linked to loss haplotype.
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A variant that is deleterious may be compensated



Gain of expression eQTLs have lower
derived allele frequencies
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Stronger epistatic selection in genes
with shared regulatory variation
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Multi-tissue expression will inform likelihood of deleterious mutations being compensated



We are all dysfunctional

All sequenced genomes contain ~100
variants predicted to severely disrupt
gene function.

Why do healthy people have disease variants?

MacArthur et al, Science, 2012
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Fold enrichment
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Understanding disease mechanism
Predictive value of gene expression dependent
onh proximity to pathological tissue

C Expression and disease signal overlap but expression effect is different in different tissues

We have limited understanding of the Type | and Il error rate

However, a lack of sharing may allow us to discover the pathological tissue



Tissue-specificity of allelic effects
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Using RNA-Sequencing to survey
differential allelic expression in
cardiovascular disease

Compared serum-starved and serum-fed coronary artery smooth muscle cells

Azad Raiesdana and Thomas Quertermous



Differential allelic expression in Down’s

syndrome
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Gene expression sequencing

Regulatory variants influenced by extra copy of
chromosome 21 indicated involvement of:
BACE2, COL6A1, COL6A2



Sites which replicate between
any two technical replicates

at a Q<0.05 given a primary
discovery at Bonferoni-corrected
p-value <0.05. Direction of effect
must be maintained.

&
2,

AP 0 v ... S = 2 w 7 / /
i, = V&S S E T .0 S
, \ ./ /// /é// e ow.quq
%Mw&\\\ mktt N //// /L R M\Xx@s
W Mmmwwwe\ \ 5\\\\\\ \\\\ \ V / / /Z// M,MW%V&@@Q&@

£ §¥¢Fs



How will gene expression influence
decisions in the clinic?

Build cellular models of disease
Survey diagnostic responses to treatments

Identify diverse disease mechanisms; move us beyond protein coding
mutations alone

Identify pathological tissues
Allow us to identify effects (or transferability) in different populations
Classify undiagnosed conditions

Cost-effective



“The field will transition from doing primarily association
work to figuring out what implicated variants do
biologically.”

David Goldstein, Director of the Center for Human Genome
Variation, Duke University, Nature, Feb 2012



Increase value of investment in genetic studies
Determine what is best to assay to predict disease risk

w Disease w

Variant A Variant B

Gene expression

Montgomery et al., Human Mol Genetics, 2009



montgomerylab.stanford.edu

Further recommended reading:
1) Genome, epigenome and RNA sequences of monozygotic twins discordant for multiple

sclerosis (2010, Nature)
2) 9p21 DNA variants associated with coronary artery disease impair interferon-y

signalling response (2011, Nature)



