Science 7 May 2010: Vol. 328 no. 5979 pp. 710-722

DOI: 10.1126/science.1188021

RESEARCH ARTICLE

A Draft Sequence of the Neandertal Genome

Richard E. Green^{1,-†±}, Johannes Krause^{1,±}, Adrian W. Briggs^{1,±}, Tomislav Maricic^{1,±}, Udo Stenzel^{1,±}, Martin Kircher^{1,±}, Nick Patterson^{2,±}, Heng Li^{2,±}, Weiwei Zhai^{3,±}, Markus Hsi-Yang Fritz^{4,±}, Nancy F. Hansen^{5,±}, Eric Y. Durand^{3,±}, Anna-Sapfo Malaspinas^{3,±}, Jeffrey D. Jensen^{6,±}, Tomas Marques-Bonet^{7,13,±}, Can Alkan^{7,±}, Kay Prüfer^{1,±}, Matthias Meyer^{1,±}, Hernán A. Burbano^{1,±}, Jeffrey M. Good^{1,8,±}, Rigo Schultz¹, Ayinuer Aximu-Petri¹, Anne Butthof¹, Barbara Höber¹, Barbara Höffner¹, Madlen Siegemund¹, Antje Weihmann¹, Chad Nusbaum², Eric S. Lander², Carsten Russ², Nathaniel Novod², Jason Affourtit⁹, Michael Egholm⁹, Christine Verna²¹, Pavao Rudan¹⁰, Dejana Brajkovic¹¹, Željko Kucan¹⁰, Ivan Gušic¹⁰, Vladimir B. Doronichev¹², Liubov V. Golovanova¹², Carles Lalueza-Fox¹³, Marco de la Rasilla¹⁴, Javier Fortea^{14,1}, Antonio Rosas¹⁵, Ralf W. Schmitz^{16,17}, Philip L. F. Johnson^{18,±}, Evan E. Eichler^{7,±}, Daniel Falush^{19,±}, Ewan Birney^{4,±}, James C. Mullikin^{5,±}, Montgomery Slatkin^{3,±}, Rasmus Nielsen^{3,±}, Janet Kelso^{1,±}, Michael Lachmann^{1,±}, David Reich^{2,20,±±} and Svante Pääbo^{1,±±}

- ± Author Affiliations
- ± Author Notes

Neandertals

First appear in the European fossil record about 400,000 years ago

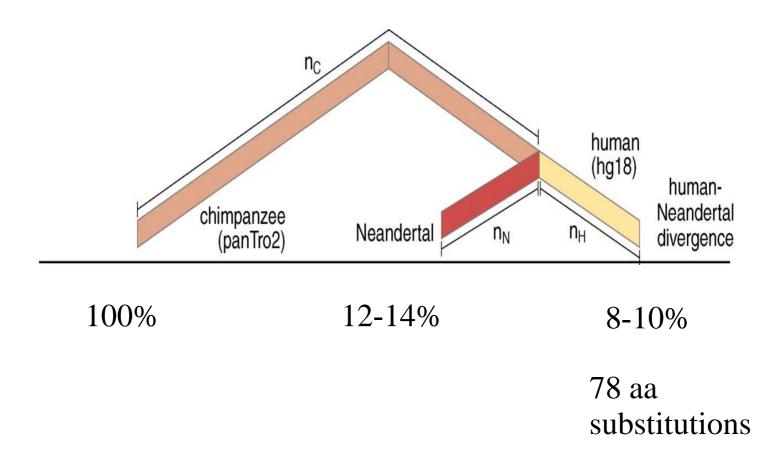
Lived in Europe and Western Asia as far east as Southern Siberia and as far south as the Middle East

came into contact with modern humans from at least 80,000 years ago

Neandertals

Neanderthal cranial capacity is thought to have been as large as babies or larger as adults than Homo sapiens

Neandertals were heavily built with robust bone structure.


They were much stronger than *Homo sapiens*, having particularly strong arms and hands

Samples and sites from which DNA was retrieved.

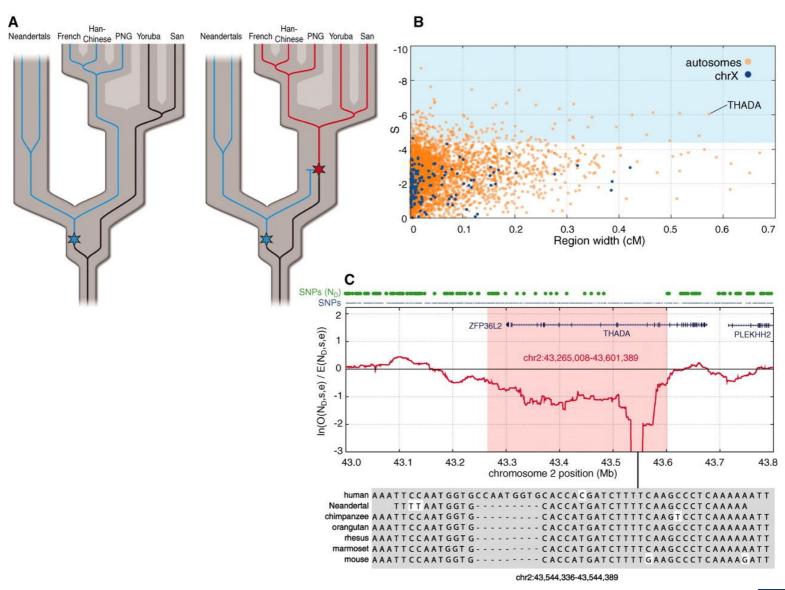


Table 2. Amino acid changes that are fixed in present-day humans but ancestral in Neandertals. The table is sorted by Grantham scores (GS). Based on the classification proposed by Li *et al.* in (87), 5 amino acid substitutions are radical (>150), 7 moderately radical (101 to 150), 33 moderately conservative (51 to

100) and 32 conservative (1 to 50). One substitution creates a stop codon. Genes showing multiple substitutions have bold SwissProt identifiers. (Table S15 shows the human and chimpanzee genome coordinates, additional database identifiers, and the respective bases.) Genes with two fixed amino acids are indicated in bold.

ID	Pos	AA	GS	Description/function
RPTN	785	*/R	_	Multifunctional epidermal matrix protein
GREB1	1164	R/C	180	Response gene in estrogen receptor-regulated pathway
OR1K1	267	R/C	180	Olfactory receptor, family 1, subfamily K, member 1
SPAG17	431	Y/D	160	Involved in structural integrity of sperm central apparatus axoneme
NLRX1	330	Y/D	160	Modulator of innate immune response
NSUN3	78	S/F	155	Protein with potential SAM-dependent methyl-transferase activity
RGS16	197	D/A	126	Retinally abundant regulator of G-protein signaling
BOD1L	2684	G/R	125	Biorientation of chromosomes in cell division 1-like
CF170	505	S/C	112	Uncharacterized protein: C6orf170
STEA1	336	C/S	112	Metalloreductase, six transmembrane epithelial antigen of prostate 1
F16A2	630	R/S	110	Uncharacterized protein: family with sequence similarity 160, member A2
LTK	569	R/S	110	Leukocyte receptor tyrosine kinase
BEND2	261	V/G	109	Uncharacterized protein: BEN domain-containing protein 2
052W1	51	P/L	98	Olfactory receptor, family 52, subfamily W, member 1
CAN15	427	L/P	98	Small optic lobes homolog, linked to visual system development
SCAP	140	I/T	89	Escort protein required for cholesterol as well as lipid homeostasis
TTF1	474	I/T	89	RNA polymerase I termination factor
OR5K4	175	H/D	81	Olfactory receptor, family 5, subfamily K, member 4
SCML1	202	T/M	81	Putative polycomb group (PcG) protein

Fig. 4 Selective sweep screen.

R E Green et al. Science 2010;328:710-722

Table 3. Top 20 candidate selective sweep regions.

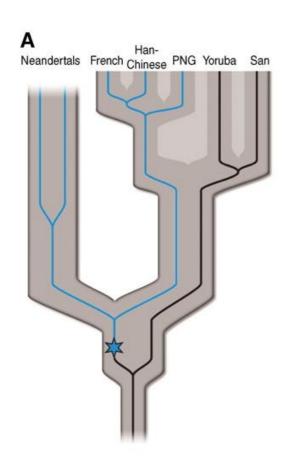
Region (hg18)	S	Width (cM)	
chr2:43265008-43601389	-6.04	0.5726	ZFP36L2;TH
chr11:95533088-95867597	-4.78	0.5538	1RKL:CCDC8
chr10:6234331 Changes in Chr21:3758012	THADA (T2)	D gene) may ha	ive affected
chr10:8333660 aspects of en	nergy metabo	olism in early m	odern hum
chr14:1002481//-10041//24	-4.84	U.4533	NIIK331;NIII
chr3:157244328-157597592	-6	0.425	KCNAB1
chr11:30601000-30992792	-5.29	0.3951	
chr2:176635412-176978762	-5.86	0.3481	HOXD11;HC
			HOXD4;HO
chr11:71572763-71914957	-5.28	0.3402	CLPB;FOLR1
chr7:41537742-41838097	-6.62	0.3129	INHBA
chr10:60015775-60262822	-4.66	0.3129	BICC1
chr6:45440283-45705503	-4.74	0.3112	RUNX2;SUP
chr1:149553200-149878507	-5.69	0.3047	SELENBP1;F
			PSMB4
chr7:121763417-122282663	-6.35	0.2855	RNF148;RN
chr7:93597127-93823574	-5.49	0.2769	
chr16:62369107-62675247	-5.18	0.2728	
chr14:48931401-49095338	-4.53	0.2582	
chr6:90762790-90903925	-4.43	0.2502	BACH2
chr10.0/E0000 070/0E4	4.57	0.2475	

Table 3. Top 20 candidate selective sweep regions.

Region (hg18)	5	Width (cM)	
chr2:43265008-43601389	-6.04	0.5726	ZFP36L2;TF
chr11:95533088-95867597	-4.78	0.5538	JRKL;CCDC8
chr10:62343313-62655667	-6.1	0.5167	RHOBTB1
chr21:37580123-37789088	-4.5	0.4977	DYRK1A
chr10:83336607-83714543	-6.13	0.4654	NRG3
chr14:10024817 DYRK1A i	s thought to u	ınderlie some o	f the cogni
chr11:3060100(impairment	t associated w	ith having thre	e copies of
chr2:176635417 21			1
chr11:71572763-71914957	-5.28	0.3402	CLPB;FOLR:
chr7:41537742-41838097	-6.62	0.3129	INHBA
chr10:60015775-60262822	-4.66	0.3129	BICC1
chr6:45440283-45705503	-4.74	0.3112	RUNX2;SUP
chr1:149553200-149878507	-5.69	0.3047	SELENBP1;I
			PSMB4
chr7:121763417-122282663	-6.35	0.2855	RNF148;RN
chr7:93597127-93823574	-5.49	0.2769	
chr16:62369107-62675247	-5.18	0.2728	
chr14:48931401-49095338	-4.53	0.2582	
chr6:90762790-90903925	-4.43	0.2502	BACH2
chr10.0/E0000 070/0E/	4.57	0.2475	

Table 3. Top 20 candidate selective sweep regions.

-			
Region (hg18)	S	Width (cM)	
chr2:43265008-43601389	-6.04	0.5726	ZFP36L2;TH
chr11:95533088-95867597	-4.78	0.5538	JRKL;CCDC8
chr10:62343313-62655667	-6.1	0.5167	RHOBTB1
chr21:37580123-37789088	-4.5	0.4977	DYRK1A
chr10:83336607-83714543	-6.13	0.4654	NRG3
chr14:10024817 NRG3 is as	ecciated with	schizonhrenia	
chr11:30601000-30992792	-5.29	0.3951	UOVD11.U
chr2:176635412-176978762	-5.86	0.3481	HOXD11;HO HOXD4;HO
chr11:71572763-71914957	-5.28	0.3402	CLPB;FOLR1
chr7:41537742-41838097	-6.62	0.3129	INHBA
chr10:60015775-60262822	-4.66	0.3129	BICC1
chr6:45440283-45705503	-4.74	0.3112	RUNX2;SUP
chr1:149553200-149878507	-5.69	0.3047	SELENBP1;F PSMB4
chr7:121763417-122282663	-6.35	0.2855	RNF148;RN
chr7:93597127-93823574	-5.49	0.2769	
chr16:62369107-62675247	-5.18	0.2728	
chr14:48931401-49095338	-4.53	0.2582	
chr6:90762790-90903925	-4.43	0.2502	BACH2
-h-10-0/50000 070/054	4.57	0.2475	


Supplementary Online Materials 17

Non-African haplotypes match Neandertal at an unusual rate

Weiwei Zhai, David Reich and Rasmus Nielsen*

* To whom correspondence should be addressed (rasmus_nielsen@berkley.edu)

Page 150 out of ~200.

Scenario for Neandertal gene flow into OOA genomes.

The Neandertals are equally close to Europeans and East Asians. However, the Neandertals are significantly closer to non-Africans than to Africans

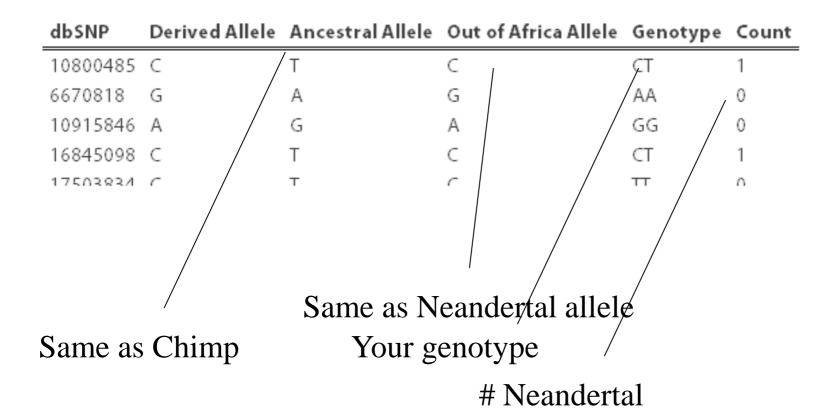
R E Green et al. Science 2010;328:710-722

Neandertal

Step 1: candidate region In a 50 kb region, search for regions in which OOA is very different from Africa

Step 2: compare to Neandertal Look for cases in which there is high match to the Neandertal sequence across many SNPs. The OOA/Neandertal allele should be derived, not ancestral

Neandertal Alleles


Neandertal

Are you a neandertal?

Use at your own risk.

Compute my Neandertal Index

You have 12 out of 82 Neandertal alleles. Running total

White Paper 23-05

Neanderthal Ancestry Estimator

Authors:

Eric Y. Durand edurand@23andme.com

Created: 5 December 2011 Last Edited: 8 January 2012

Summary:

Neanderthal ancestry estimator is a 23andMe feature that enables customers to find out how much of their genome is of Neanderthal ancestry. This document is a technical description of the feature.

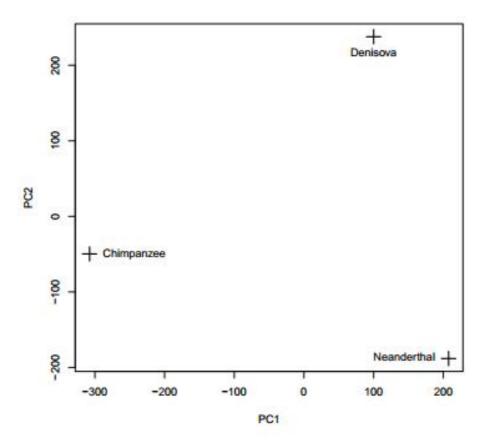


Figure 1: PCA on the Neanderthal, Denisovan and Chimpanzee genomes. We used the subset of the genomes that was defined on the 23andMe genotyping platform. PC1 differentiates archaic humans from the Chimpanzee while PC2 separates Neanderthal from Denisova.

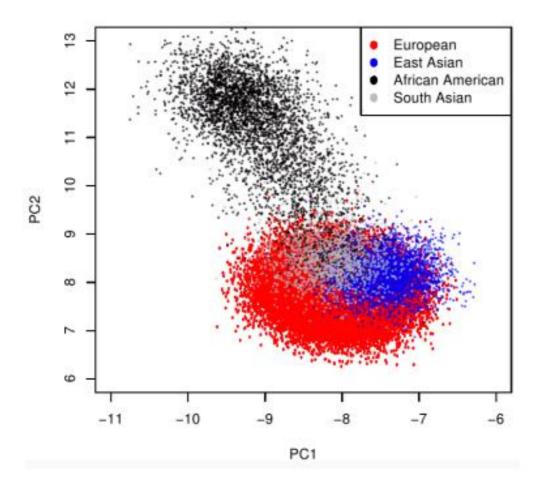
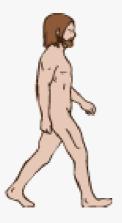


Figure 2: Projection of customer genotypes onto PC1 and PC2. Customers of European, East-Asian and South-Asian ancestry are shifted towards Neanderthal compared to African-Americans.

Got Neanderthal DNA?



Average Eastern Asian user

MODERN HUMANS

Higher brow Narrower shoulders Slightly taller

NEANDERTHALS

Heavy eyebrow ridge

Long, low, bigger skull

Prominent nose with
developed nasal chambers
for cold-air protection