

I. Natural variation in the human genome

2. Genetic Association & Linkage Disequilibrium

Wednesday, July 7, 2010

ORIGINAL INVESTIGATION

Stephanie M. Fullerton · Andrew G. Clark Kenneth M. Weiss · Scott L. Taylor · Jari H. Stengård Veikko Salomaa · Eric Boerwinkle Deborah A. Nickerson

Sequence polymorphism at the human apolipoprotein All gene (APOA2): unexpected deficit of variation in an African-American sample

Sequence APOA2 in 72 people

Look at patterns of polymorphisms

Chimp		Site	no.ª													
SNP haplotype no.	Sequence haplotype no.	1 5 5 C	2 0 1 G	1 8 7 2 T	1 2 1 8 G	2 6 7 1 2	2 0 3 8 G	2 0 8 5 C	2 1 1 5 G	2 2 3 3 C	2 8 1 8 C	2 8 6 8 C	3 9 9 4 C	3 0 2 7 T	3 0 9 2 A	2 0 8 G

Find polymorphisms at these positions.

Reference sequence is listed.

Chimp		Site	no.ª														San	nple			
SNP haplotype no.	Sequence haplotype no.	1 5 5 C	2 0 1 G	1 8 7 2 T	1 2 1 8 G	2 6 7 1 ?	2 0 3 6	2 0 8 5 C	2 1 5 G	2 2 3 3 C	2 8 1 8 C	2 8 6 8 C	3 9 9 4 C	3 0 2 7 T	3 0 9 2 A	2 0 8 G	J	N	R	Т	
Core re-se	quenced san S9	nples G		с		20	•		А	•	•	•	•	•	•	•		0 ()	1	1

Sequence of the first chromosome.

Circle is same as reference.

Chimp	Chimp		no.ª														Samp	le		
SNP haplotype no.	Sequence haplotype no.	1 5 5 C	2 0 1 G	1 8 7 2 T	1 2 1 8 G	2 6 7 1 ?	2 0 3 8 G	2 0 8 5 C	2 1 1 5 G	2 2 3 3 C	2 8 1 8 C	2 8 6 8 C	3 9 9 4 C	3 0 2 7 T	3 0 9 2 A	2 0 8 G	J	N	R	т
Core re-se	quenced san	nples																		
	S9	G		С		20	•		А	•	٠	•	•	٠	•	•	0	0	1	1
	S9a	G		С		18	٠		Α	•	٠	•	•	٠	•	•	0	1	0	1
	S2	G		С		19	٠		•	•	٠	•	•	٠	•	•	15	10	12	37
	S2a	G		С		20	٠		•	•	٠	•	•	٠	•	•	0	2	3	5
	S2b	G		С		18	•		•	•	٠	•	•	٠	•	•	0	2	1	3
	S2c	G		С		21	•		•	•	٠	•	•	٠	•	•	1	0	1	2
	S1d	G		•		19	٠		•	•	٠	•	•	٠	•	•	5	0	0	5
	S1	G		•		16	٠		•	•	٠	•	•	٠	•	•	17	19	14	50
	S1a	G		•		18	٠		•	•	٠	•	•	٠	•	•	5	1	0	6
	S1b	G		•		15	٠		•	•	٠	•	•	٠	•	•	2	0	0	2
	S1c	G		•		17	٠		•	•	٠	•	•	٠	•	•	1	0	0	1
	S6	•		•		16	٠		•	•	٠	•	•	٠	•	•	1	2	0	3
	S5	•		•		14	٠		•	Т	٠	Α	•	٠	•	•	1	4	2	7
	S3	•		•		14	•		•	Т	٠	Α	•	С	G	Α	0	3	6	9
	S7	•		•		13	С		•	•	Т	•	•	٠	•	•	0	2	0	2
	S8	•		•		13	С		٠	٠	Т	٠	٠	С	G	•	0	1	1	2
	S4	•		•		13	С		٠	٠	Т	٠	Т	С	G	•	0	1	6	7
	S4a	?		•		14	С		•	•	Т	•	Т	С	G	•	0	0	1	1

Chimp		Site 1	10. ^a														Samp	le		
SNP haplotype no.	Sequence haplotype no.	1 5 5 C	2 0 1 G	1 8 7 2 T	1 2 1 8 G	2 6 7 1 ?	2 0 3 8 G	2 0 8 5 C	2 1 1 5 G	2 2 3 3 C	2 8 1 8 C	2 8 6 8 C	3 9 9 4 C	3 0 2 7 T	3 0 9 2 A	2 0 8 G	J	N	R	т
Core re-se	quenced san	ples																		
	S9	G		С		20	٠		Α	•	•	٠	•	•	•	•	0	0	1	1
	S9a	G		С		18	٠		Α	•	•	٠	•	•	•	•	0	1	0	1
	S2	G		С		19	٠		٠	•	•	٠	•	•	•	•	15	10	12	37
	S2a	G		С		20	٠		٠	•	•	٠	•	•	•	•	0	2	3	5
	S2b	G		С		18	٠		٠	•	•	٠	•	•	•	•	0	2	1	3
	S2c	G		С		21	•		٠	•	•	٠	•	•	•	•	1	0	1	2
	S1d	G		•		19	٠		٠	•	•	٠	•	•	۲	•	5	0	0	5
	S1	G		•		16	٠		٠	•	•	٠	•	•	۲	•	17	19	14	50
	S1a	G		•		18	٠		٠	•	•	٠	•	۰	•	•	5	1	0	6
	S1b	G		•		15	٠		•	•	•	•	•	۰	•	•	2	0	0	2
	S1c	G		•		17	٠		٠	•	•	٠	•	•	•	•	1	0	0	1
	S6	•		•		16	٠		•	•	•	•	•	•	•	•	1	2	0	3
	S5	•		•		14	٠		•	Т	•	Α	•	•	•	•	1	4	2	7
	S3	•		•		14	٠		•	Т	•	Α	•	С	G	Α	0	3	6	9
	S7	•		•		13	С		٠	•	Т	٠	•	۰	•	•	0	2	0	2
	S8	•		•		13	С		•	•	Т	•	•	С	G	•	0	1	1	2
	S4	•		•		13	С		•	•	Т	•	Т	С	G	•	0	1	6	7
	S4a	?		•		14	С		•	٠	Т	٠	Т	С	G	•	0	0	1	1

- Haplotype Frequencies
 - The frequency of each type of chromosome
 - Contain all the information provided by other summary measures
- Commonly used summaries
 - D
 - D'
 - r^2 or Δ^2

Haplotype Frequencies

Linkage equilibrium expected for distant loci

Linkage equilibrium expected for nearby loci

Fill out this table.

X11 is number of times that haplotype is seen.

	2818 C	2818 T	
3027 T	X11	X21	# 3027 T alleles
3027 C	X12	x22	#3027 C alleles
	# 2818 C Allele	# 2818 T allele	

Allele Counts

Haplotype frequencies

Disequilibrium Coefficient D_{AB}

D' – a scaled version of D

More on D'

Pluses:

- D' = 1 or D' = -1 means no evidence for recombination between the markers
- If allele frequencies are similar, high D' means the markers are good surrogates for each other

Minuses:

- D' estimates inflated in small samples
- D' estimates inflated when one allele is rare

Correlation coefficient R

More on r²

- r² = 1 implies the markers provide exactly the same information
- The measure preferred by population geneticists
- Measures loss in efficiency when marker A is replaced with marker B in an association study
 - With some simplifying assumptions (e.g. see Pritchard and Przeworski, 2001)

Summarizing Disequilibrium

Comparing Populations ...

LD extends further in CEPH and the Han/Japanese than in the Yoruba

slide created by Goncarlo Abecasis

Colorectal cancer

1057 cases 960 controls

550K SNPs

					Genotype		Frequ	iency				
	Panel	Group	Total	GG	GT	π	G	т	Al lele χ^2	P value	Allelic OR (for G against T)	95% c.i.
	A	All affected individuals	1,027ª	352	486	189	0.579	0.421	31.79	1.72×10^{-7}	1.43	1.26-1.63
		Cancers only	620	202	302	116	0.569	0.431	18.96	1.34×10^{-5}	1.38	1.19-1.59
		Adenomas only	407ª	150	184	73	0.57 6	0.405	25.01	5.70×10^{-7}	1.53	1.29-1.81
		Controls	960	235	471	254	0.490	0.510				
~	D	Coloratel concer	A 261	Ci	ancer:	0.5	76 0.	43T	20 71	E 02 - 10-8	1 10	1 10 1 06
	1027 C	Colorectal cancer	-	CC	ontrol	s: 0.4	49G ().51T				
		960 controls										

Table 1 Risk of colorectal neoplasia associated with the 8q24 SNP rs6983267

				Genotype		Freq	uency		
Panel	Group	Total	GG	GT	TT	G	т	Al lele χ^2	P value
A	All affected individuals	1,027ª	352	486	189	0.579	0.421	31.79	1.72×10^{-7}
	Cancers only	620	202	302	116	0.569	0.431	18.96	1.34×10^{-5}
	Adenomas only	407 ^a	150	184	73	0.595	0.405	25.01	5.70×10^{-7}
	Controls	960	235	471	254	0.490	0.510		
D	Colorostal cancore	1 261	1 22/	2 216	011	0 560	0 4 4 0	20 71	E 02 V 10-8

Table 1 Risk of colorectal neoplasia associated with the 8q24 SNP rs6983267

Are these different?

Cancer: 0.57G 0.43T

controls: 0.49G 0.51T

Chi squared

Chi squared

http://www.graphpad.com/quickcalcs/chisquared1.cfm

Compare observed and expected frequencies

This calculator compares observed and expected frequencies with the chi-square test. Read an example with explanation.

Note that the chi-square test is more commonly used in a very different situation -- to analyze a contingency table. This is appropriate when you wish to compare two or more groups, and the outcome variable is categorical. For example, compare number of patients with postoperative infections after two kinds of operations. If you need to analyze a contingency table, do not use this table. If you have two groups (rows) and two outcomes, use <u>this calculator</u>. If your table is larger, try the free demos of <u>GraphPad InStat</u> (basic statistics only) and <u>GraphPad Prism</u> (statistics, nonlinear regression and scientific graphics).

Enter the names of the categories into the first column (optional). Enter the actual number of objects or individuals or events observed in the second column. Then enter the expected number, fraction or percent expected in the third column.

1. Choose data entry format

- Inter up to 20 categories (rows).
- Enter or paste up to 2000 categories (rows). Caution: Changing format will erase your data.

3. Enter data

Category	Observed #	Expected
1:		
2:		

2. How will you enter the expected values?

- Actual number expected
- Percent expected
- Fraction expected

4. View the results

Calculate now

Clear the form

Chi squared

http://www.graphpad.com/quickcalcs/chisquared1.cfm

				Genotype		Freq	uency		
Panel	Group	Total	GG	GT	ΤΤ	G	т	Allele χ^2	P value
A	All affected individuals	1,027ª	352	486	189	0.579	0.421	31.79	1.72×10^{-7}
	Cancers only	620	202	302	116	0.569	0.431	18.96	1.34×10^{-5}
	Adenomas only	407ª	150	184	73	0.595	0.405	25.01	5.70×10^{-7}
	Controls	960	235	471	254	0.490	0.510		
D	Colorootal cancore	1 261	1 22/	2 216	011	0 560	0.4.40	20 71	E 02 V 10-8

Table 1 Risk of colorectal neoplasia associated with the 8q24 SNP rs6983267

~

Cancer: 352GG + 486GT = 1190 G alleles Controls: 0.49G 486GT + 189 TT = 864 T alleles 0.51T

Chi squared

http://www.graphpad.com/quickcalcs/chisquared1.cfm

1. Choose data entry format

.

Enter up to 20 categories (rows).
 Enter or paste up to 2000 categories (rows).
 Caution: Changing format will erase your data.

3. Enter data

Category	Observed #	Expected
1: G alleles	1190	.49
2: T alleles	864	.51
3:		

Chi squared = 31 P values = 10⁻⁷

2. How will you enter the expected values?

- Actual number expected
- Percent expected
- Fraction expected

4. View the results

Stuart's genotype

search your account

stuart kim Acco

-

Go

etics just got personal.

browse raw data

Showing raw data for SNP rs6983267, which is on chromosome 8.

8	Jun	np to	a ge	ne:	-				Go	a SI	NP:	rs69	832	67		Go					
46M Bases	or a	chro	omos	som	e:																
33k SNPs	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
	«R	eturn	to y	our v	vhol	e gei	nom	e.													

How different is this SNP in the cases versus the controls?

Allelic odds ratio: ratio of the allele ratios in the cases divided by the allele ratios in the controls

Likelihood ratio: Given a genotype, how much more likely are you to show a trait compared to the general population

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at P < .05."

- P = .05 means that there is a 5% chance for this to occur randomly.
- If you try 100 times, you will get about 5 hits.
- If you try 547,647 times, you should expect 547,647 x .05 = 27,382 hits.
- So 27,673 (observed) is about the same as one would randomly expect.

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at P < .05."

- Here, have 547,647 SNPs = # hypotheses
- False discover rate = q = p x # hypotheses.
 This is called the Bonferroni correction.
- Want q = .05. This means a positive SNP has a .05 likelihood of rising by chance.
- At q = .05, p = .05 / 547,647 = .91 x 10⁻⁷
- This is the p value cutoff used in the paper.

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at P < .05."

- The Bonferroni correction is too conservative. It assumes that all of the tests are independent.
- But the SNPs are linked in haplotype blocks, so there really are less independent hypotheses than SNPs.
- Another way to correct is to permute the data many times, and see how many times a SNP comes up in the permuted data at a particular threshold.

Fill out this table.

Convert all numbers to frequencies.

	2818 C	2818 T	
3027 T	X11	X21	# 3027 T alleles
3027 C	X12	x22	#3027 C alleles
	# 2818 C Allele	# 2818 T allele	

Calculate D and D'

	2818 C	2818 T	
3027 T	X11	X21	# 3027 T alleles
3027 C	X12	x22	#3027 C alleles
	# 2818 C Allele	# 2818 T allele	

D = x11 - p1q1 D_{max} is given by the smaller of p_1q_2 and p_2q_1 D' = D/Dmax

Calculate r²

	2818 C	2818 T	
3027 T	X11	X21	# 3027 T alleles
3027 C	X12	x22	#3027 C alleles
	# 2818 C Allele	# 2818 T allele	

 $r^2 = D^2/p1p2q1q2$

Linkage Equilibrium
Expected for Distant Loci
$$p_{AB} = p_A p_B$$
$$p_{Ab} = p_A p_b = p_A (1 - p_B)$$
$$p_{aB} = p_a p_B = (1 - p_A) p_B$$
$$p_{ab} = p_a p_b = (1 - p_A)(1 - p_B)$$

$$p_{AB} \neq p_A p_B$$

$$p_{Ab} \neq p_A p_b = p_A (1 - p_B)$$

$$p_{aB} \neq p_a p_B = (1 - p_A) p_B$$

$$p_{ab} \neq p_a p_b = (1 - p_A)(1 - p_B)$$

Disequilibrium Coefficient D_{AB}

$$D_{AB} = p_{AB} - p_A p_B$$
$$p_{AB} = p_A p_B + D_{AB}$$
$$p_{Ab} = p_A p_b - D_{AB}$$
$$p_{aB} = p_a p_B - D_{AB}$$
$$p_{ab} = p_a p_b + D_{AB}$$

slide created by Goncarlo Abecasis

D' – A scaled version of D

$$D'_{AB} = \begin{cases} \frac{D_{AB}}{\min(p_A p_B, p_a p_b)} & D_{AB} < 0\\ \frac{D_{AB}}{\min(p_A p_b, p_a p_B)} & D_{AB} > 0 \end{cases}$$

- Ranges between –1 and +1
 - More likely to take extreme values when allele frequencies are small
 - ±1 implies at least one of the observed haplotypes was not observed

Δ^2 (also called r²)

$$\Delta^2 = \frac{D_{AB}^2}{p_A(1-p_A)p_B(1-p_B)}$$
$$= \frac{\chi^2}{2n}$$

- Ranges between 0 and 1
 - 1 when the two markers provide identical information
 - 0 when they are in perfect equilibrium
- Expected value is 1/2n

Cancer: 0.57G 0.43T

Cancer: G:T ratio = 0.57/.43 = 1.32

controls: 0.49G 0.51T

controls: G:T ratio = .49/.51 = .96

Allelic odds ratio = 1.32/.96 = 1.37