I. Natural variation in

the human genome

2. Genetic Association \& Linkage Disequilibrium
3. Genome-wide association studies

Stephanie M. Fullerton • Andrew G. Clark
Kenneth M. Weiss • Scott L. Taylor • Jari H. Stengård Veikko Salomaa - Eric Boerwinkle
Deborah A. Nickerson
Sequence polymorphism at the human apolipoprotein All gene (APOA2): unexpected deficit of variation in an African-American sample

Sequence APOA2 in 72 people Look at patterns of polymorphisms

Chimp		Site no. ${ }^{\text {a }}$														
SNP haplotype no.	Sequence haplotype no.			1	1	2	2	2	2	2	2	2	3	3	3	
		1	2	8	2	6	0	0	1	2	8	8	9	0	0	2
		5	0	7	1	7	3	8	1	3	1	6	9	2	9	0
		5	1	2	8	1	8	5	5	3	8	8	4	7	2	8
		C	G	T	G	?	G	C	G	C	C	C	C	T	A	G

Find polymorphisms at these positions.
Reference sequence is listed.

Chimp																					
SNP	Sequence			1	1	2	2	2	2	2	2	2	3	3	3						
haplotype	haplotype	1	2	8	2	6	0	0	1	2	8	8	9	0	0	2					
no.	no.	5	0	7	1	7	3	8	1	3	1	6	9	2	9	0					
		5	1	2	8	1	8	5	5	3	8	8	4	7	2	8					
		C	G	T	G	?	G	C	G	C	C	C	C	T	A	G	J	N	R	T	
Core re-sequenced samples																					
	S9	G		C		20	-		A	-	-	-	-	-	-	-					1

Sequence of the first chromosome.
Circle is same as reference.

Chimp		Site no. ${ }^{\text {a }}$															Sample			
SNP haplotype no.	Sequence haplotype no.			1	1	2	2	2	2	2	2	2	3	3	3					
		1	2	8	2	6	0	0	1	2	8	8	9	0	0	2				
		5	0	7	1	7	3	8	1	3	1	6	9	2	9	0				
		5	1	2	8	1	8	5	5	3	8	8	4	7	2	8				
		C	G	T	G	?	G	C	G	C	C	C	C	T	A	G	J	N	R	T
Core re-sequenced samples																				
	S9	G		C		20	-		A	-	-	-	-	-	-	-	0	0	1	1
	S9a	G		C		18	-		A	-	-	-	-	-	-	-	0	1	0	1
	S2	G		C		19	-		-	-	-	-	-	-	-	-	15	10	12	37
	S2a	G		C		20	-		-	-	-	-	-	-	-	-	0	2	3	5
	S2b	G		C		18	-		-	-	-	-	-	-	-	-	0	2	1	3
	S2c	G		C		21	-		-	-	-	-	-	-	-	-	1	0	1	2
	S1d	G		\bullet		19	-		-	-	-	-	-	-	-	-	5	0	0	5
	S1	G		\bullet		16	-		-	-	-	-	-	-	\bullet	-	17	19	14	50
	S1a	G		-		18	-		-	-	-	-	-	-	-	-	5	1	0	6
	S1b	G		-		15	-		-	-	-	-	-	-	-	-	2	0	0	2
	S1c	G		-		17	-		-	-	-	-	-	-	-	-	1	0	0	1
	S6	-		-		16	-		-	-	-	-	-	-	-	-	1	2	0	3
	S5	-		-		14	-		-	T	-	A	-	-	-	-	1	4	2	7
	S3	-		-		14	-		-	T	-	A	-	C	G	A	0	3	6	9
	S7	-		-		13	C		-	-	T	-	-	\bullet	\bullet	-	0	2	0	2
	S8	-		\bullet		13	C		-	-	T	-	-	C	G	-	0	1	1	2
	S4	-		-		13	C		-	-	T	-	T	C	G	-	0	1	6	7
	S4a	?		\bullet		14	C		-	-	T	-	T	C	G	-	0	0	1	1

Chimp		Site no. ${ }^{\text {a }}$															mp				
SNP haplotype no.	Sequence haplotype no.	$\begin{aligned} & 1 \\ & 5 \\ & 5 \\ & \mathrm{C} \end{aligned}$		$\begin{aligned} & 1 \\ & 8 \\ & 7 \\ & 2 \\ & \text { T } \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 8 \\ & \mathrm{G} \end{aligned}$	2671$?$	$\begin{aligned} & 2 \\ & 0 \\ & 3 \\ & 8 \\ & \mathrm{G} \end{aligned}$	2085C	$\begin{aligned} & 2 \\ & 1 \\ & 1 \\ & 5 \\ & G \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 3 \\ & 3 \\ & \mathrm{C} \end{aligned}$	$\begin{array}{\|l} 2 \\ 8 \\ 1 \\ 8 \\ 8 \\ C \end{array}$	$\begin{aligned} & 3 \\ & 9 \\ & 9 \\ & 4 \\ & \hline \mathrm{C} \end{aligned}$	$\begin{aligned} & 3 \\ & 0 \\ & 2 \\ & 7 \\ & \mathrm{~T} \end{aligned}$	3092A	$\begin{aligned} & 2 \\ & 0 \\ & 8 \\ & \mathrm{G} \end{aligned}$	J		N	R	T	
Core re-sequenced samples																					
	S9	G			C		20	-		A	-	-	-	-	-	-		0	0	1	1
	S9a	G		C		18	-		A	-	-	-	-	-	-		0	1	0	1	
	S2	G		C		19	-		-	-	-	-	-	-	-		15	10	12	37	
	S2a	G		C		20	-		-	-	-	-	-	-	-		0	2	3	5	
	S2b	G		C		18	-		-	-	-	-	-	-	-		0	2	1	3	
	S2c	G		C		21	-		-	-	-	-	-	-	-		1	0	1	2	
	S1d	G		-		19	-		-	-	-	-	-	-	-		5	0	0	5	
	S1	G		-		16	-		-	-	-	-	-	-	-		17	19	14	50	
	S1a	G		-		18	-		-	-	-	-	-	-	-		5	1	0	6	
	S1b	G		-		15	-		-	-	-	-	-	-	-		2	0	0	2	
	S1c	G		-		17	-		-	-	-	-	-	-	-		1	0	0	1	
	S6	-		-		16	-		-	-	-	-	-	-	-		1	2	0	3	
	S5	-		-		14	-		-	T	-	-	-	-	-		1	4	2	7	
	S3	-		-		14	-		-	T	-	-	C	G	A		0	3	6	9	
	S7	-		-		13	C		-	-	T	-	-	-	-		0	2	0	2	
	S8	-		-		13	C		-	-	T	\bigcirc	C	G	-		0	1	1	2	
	S4	-		-		13	C		-	-	T	T	C	G	-		0	1	6	7	
	S4a	?		-		14	C		-	-	T	T	C	G	-		0	0	1	1	

Commonly Used Descriptors

- Haplotype Frequencies
- The frequency of each type of chromosome
- Contain all the information provided by other summary measures
- Commonly used summaries
${ }^{\circ}$ D
${ }^{\circ}$ D'
- r^{2} or Δ^{2}

Haplotype Frequencies

Linkage equilibrium expected for distant loci

Linkage equilibrium expected for nearby loci

Fill out this table.
X 11 is number of times that haplotype is seen.

	2818 C	2818 T	
3027 T	X11	X21	\# 3027 T alleles
3027 C	X12	x22	\#3027 C alleles
	\# 2818 C Allele	\# 2818 T allele	

Allele Counts

Haplotype frequencies

Disequilibrium Coefficient $D_{A B}$

$D_{A B}$ is hard to interpret

- Sign is arbitrary ...
${ }^{\circ}$ A common convention is to set A, B to be the common allele and a, b to be the rare allele
- Range depends on allele frequencies
- Hard to compare between markers

D^{\prime} - a scaled version of D

More on D^{\prime}

- Pluses:
${ }^{-} \mathrm{D}^{\prime}=1$ or $\mathrm{D}^{\prime}=-1$ means no evidence for recombination between the markers
- If allele frequencies are similar, high D' means the markers are good surrogates for each other
- Minuses:
- D' estimates inflated in small samples
- D' estimates inflated when one allele is rare

Correlation coefficient R

More on $\mathbf{r}^{\mathbf{2}}$

- $r^{2}=1$ implies the markers provide exactly the same information
- The measure preferred by population geneticists
- Measures loss in efficiency when marker A is replaced with marker B in an association study
- With some simplifying assumptions (e.g. see Pritchard and Przeworski, 2001)

Summarizing Disequilibrium

Comparing Populations

LD extends further in CEPH and the Han/Japanese than in the Yoruba

Colorectal cancer

1057 cases 960 controls

550K SNPs

Table 1 Risk of colorectal neoplasia associated with the 8q24 SNP rs6983267

Table 1 Risk of colorectal neoplasia associated with the 8q24 SNP rs6983267

Panel	Group	Total	Genotype			Frequency		Allele χ^{2}	P value
			GG	GT	TT	G	T		
A	All affected individuals	1,027 ${ }^{\text {a }}$	352	486	189	0.579	0.421	31.79	1.72×10^{-7}
	Cancers only	620	202	302	116	0.569	0.431	18.96	1.34×10^{-5}
	Adenomas only	$407^{\text {a }}$	150	184	73	0.595	0.405	25.01	5.70×10^{-7}
	Controls	960	235	471	254	0.490	0.510		
-	Calarantal mamamm	125.1	1201	$\bigcirc 316$	011	nean	n 110	2071	¢ $n \rightarrow \ldots 1 n-8$

Are these different?

Cancer: 0.57G 0.43T
controls: 0.49G 0.51T

Chi squared

Chi squared

http://www.graphpad.com/quickcalcs/chisquared1.cfm

1. Select category
2. Choose calculator
3. Enter data
4. View res

Compare observed and expected frequencies

This calculator compares observed and expected frequencies with the chi-square test. Read an example with explanation.

Note that the chi-square test is more commonly used in a very different situation -- to analyze a contingency table. This is appropriate when you wish to compare two or more groups, and the outcome variable is categorical. For example, compare number of patients with postoperative infections after two kinds of operations. If you need to analyze a contingency table, do not use this table. If you have two groups (rows) and two outcomes, use this calculator. If your table is larger, try the free demos of GraphPad InStat (basic statistics only) and GraphPad Prism (statistics, nonlinear regression and scientific graphics).

Enter the names of the categories into the first column (optional). Enter the actual number of objects or individuals or events observed in the second column. Then enter the expected number, fraction or percent expected in the third column.
\(\left.$$
\begin{array}{ll}\text { 1. Choose data entry format } & \begin{array}{l}\text { 2. How will you enter the } \\
\text { expected values? }\end{array}
$$

\begin{array}{ll}e Enter up to 20 categories (rows). \& Actual number expected

Enter or paste up to 2000 categories (rows) \& Percent expected

Caution: Changing format will erase your data.\end{array} \& Fraction expected\end{array}\right\}\)| 3. Enter data | 4. View the results |
| :--- | :--- |

Category	Observed \#
$1: \square$	
$2: \square$	
2	

Calculate now
Clear the form

Chi squared

http://www.graphpad.com/quickcalcs/chisquared1.cfm

Table 1 Risk of colorectal neoplasia associated with the 8q24 SNP rs6983267

Panel	Group	Total	Genotype			Frequency		Allele χ^{2}	P value
			GG	GT	TT	G	T		
A	All affected individuals	$1,027^{\text {a }}$	352	486	189	0.579	0.421	31.79	1.72×10^{-7}
	Cancers only	620	202	302	116	0.569	0.431	18.96	1.34×10^{-5}
	Adenomas only	$407^{\text {a }}$	150	184	73	0.595	0.405	25.01	5.70×10^{-7}
	Controls	960	235	471	254	0.490	0.510		
-	Colarnatal manmam	126.1	1201	O216	011	nemen	n110	2071	¢ $n \rightarrow \ldots 1 n-8$

$$
\begin{array}{rlrl}
\text { Cancer: } & \text { 352GG }+486 \mathrm{GT} & =1190 \mathrm{G} \text { alleles } & \text { Controls: } 0.49 \mathrm{G} \\
486 \mathrm{GT}+189 \mathrm{TT} & =864 \text { T alleles } & 0.51 \mathrm{~T}
\end{array}
$$

Chi squared

http://www.graphpad.com/quickcalcs/chisquared1.cfm

1. Choose data entry format
© Enter up to 20 categories (rows).

- Enter or paste up to 2000 categories (rows).

Caution: Changing format will erase your data.
3. Enter data
Observed \# Expected

1:	G alleles	1190
2: T alleles	864	.49
		.51

$3:$

2. How will you enter the expected values?

- Actual number expected
- Percent expected
- Fraction expected

4. View the results

Calculate now

Clear the form

Chi squared $=31$ P values $=10^{-7}$

Stuart's genotype

browse raw data

Showing raw data for SNP rs6983267, which is on chromosome 8.

| Gene | Position | SNP | Versions | stuart kim's Genotype |
| :--- | :--- | :--- | :--- | :--- | :--- |
| H intergenic | 128482487 | rs6983267 | G or T | GG |

Homozygous bad allele \square

How different is this SNP in the cases versus the controls?

Allelic odds ratio: ratio of the allele ratios in the cases divided by the allele ratios in the controls

Likelihood ratio: Given a genotype, how much more likely are you to show a trait compared to the general population

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at $\mathrm{P}<.05$."

- $P=.05$ means that there is a 5% chance for this to occur randomly.
- If you try 100 times, you will get about 5 hits.
- If you try 547,647 times, you should expect $547,647 \times .05=27,382$ hits.
- So 27,673 (observed) is about the same as one would randomly expect.

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at $\mathrm{P}<.05$."

- Here, have 547,647 SNPs = \# hypotheses
- False discover rate = q = p x \# hypotheses. This is called the Bonferroni correction.
- Want $q=.05$. This means a positive SNP has a .05 likelihood of rising by chance.
- At $q=.05, p=.05 / 547,647=.91 \times 10^{-7}$
- This is the p value cutoff used in the paper.

Multiple hypothesis testing

"Of the 547,647 polymorphic tag SNPs, 27,673 showed an association with disease at $\mathrm{P}<.05$."

- The Bonferroni correction is too conservative. It assumes that all of the tests are independent.
- But the SNPs are linked in haplotype blocks, so there really are less independent hypotheses than SNPs.
- Another way to correct is to permute the data many times, and see how many times a SNP comes up in the permuted data at a particular threshold.

Fill out this table.
Convert all numbers to frequencies.

	2818 C	2818 T	
3027 T	X11	X21	\# 3027 T alleles
3027 C	X12	x22	\#3027 C alleles
	\# 2818 C Allele	\# 2818 T allele	

Calculate D and D'

	2818 C	2818 T	
3027 T	X11	X21	\# 3027 T alleles
3027 C	X12	x22	\#3027 C alleles
	\#2818 C Allele	\# 2818 T allele	

$D=x 11-p 1 q 1$
$D_{\text {max }}$ is given by the smaller of $p_{1} q_{2}$ and $p_{2} q_{1}$
$D^{\prime}=\mathrm{D} / \mathrm{Dmax}$

Calculate r^{2}

	2818 C	2818 T	
3027 T	X11	X21	\# 3027 T alleles
3027 C	X12	x22	\#3027 C alleles
	\# 2818 C Allele	\# 2818 T allele	

$$
r^{2}=D^{2} / p 1 p 2 q 1 q 2
$$

Haplotype Frequencies

\[

\]

Linkage Equilibrium Expected for Distant Loci

$$
\begin{aligned}
& p_{A B}=p_{A} p_{B} \\
& p_{A b}=p_{A} p_{b}=p_{A}\left(1-p_{B}\right) \\
& p_{a B}=p_{a} p_{B}=\left(1-p_{A}\right) p_{B} \\
& p_{a b}=p_{a} p_{b}=\left(1-p_{A}\right)\left(1-p_{B}\right)
\end{aligned}
$$

Linkage Disequilibrium Expected for Nearby Loci

$p_{A B} \neq p_{A} p_{B}$
$p_{A b} \neq p_{A} p_{b}=p_{A}\left(1-p_{B}\right)$
$p_{a B} \neq p_{a} p_{B}=\left(1-p_{A}\right) p_{B}$
$p_{a b} \neq p_{a} p_{b}=\left(1-p_{A}\right)\left(1-p_{B}\right)$

Disequilibrium Coefficient $D_{A B}$

$$
\begin{aligned}
D_{A B} & =p_{A B}-p_{A} p_{B} \\
p_{A B} & =p_{A} p_{B}+D_{A B} \\
p_{A b} & =p_{A} p_{b}-D_{A B} \\
p_{a B} & =p_{a} p_{B}-D_{A B} \\
p_{a b} & =p_{a} p_{b}+D_{A B}
\end{aligned}
$$

D' - A scaled version of D

$$
D_{A B}^{\prime}= \begin{cases}\frac{D_{A B}}{\min \left(p_{A} p_{B}, p_{a} p_{b}\right)} & D_{A B}<0 \\ \frac{D_{A B}}{\min \left(p_{A} p_{b}, p_{a} p_{B}\right)} & D_{A B}>0\end{cases}
$$

- Ranges between -1 and +1
- More likely to take extreme values when allele frequencies are small
- ± 1 implies at least one of the observed haplotypes was not observed

Δ^{2} (also called \mathbf{r}^{2})

$$
\begin{aligned}
\Delta^{2} & =\frac{D_{A B}^{2}}{p_{A}\left(1-p_{A}\right) p_{B}\left(1-p_{B}\right)} \\
& =\frac{\chi^{2}}{2 n}
\end{aligned}
$$

- Ranges between 0 and 1
- 1 when the two markers provide identical information
- 0 when they are in perfect equilibrium
- Expected value is $1 / 2 n$

Cancer: 0.57G 0.43T
Cancer: G:T ratio $=0.57 / .43=1.32$
controls: 0.49G 0.51T
controls: G:T ratio = .49/.51 = . 96

Allelic odds ratio $=1.32 / .96=1.37$

