Table-Lookup Algorithms for Elementary Functions
and Their Error Analysis

Ping Tak Peter Tang
Mathematics and Computer Science Division
Argonne National Laboratory
9700 South Cass Ave.

Argonne, IL 60439-4801

Abstract

Table-lookup algorithms for calculating elementary func-
tions offer superior speed and accuracy when compared
with more traditional algorithms. We show that, with
careful design, it is feasible to implement table-lookup
algorithms in hardware. Furthermore, we present a uni-
form approach to carry out a tight error analysis for
such implementations.

1 Introduction

Since the adoption of IEEE Standard 754 for floating-
point arithmetic [7], there has been a revival of interest
in implementing elementary functions to near-perfect
accuracy (see [12], [5], and [8], for example). A common
thread of the recent work in this area is table-lookup al-
gorithms. From a mathematical and algorithmic point
of view, table-lookup algorithms are straightforward
generalizations of more traditional algorithms such as
those in [2] and [4]. According to W. Kahan, J. C. P.
Miller had already pointed out in late 1950s that such
approaches would be desirable as soon as memory be-
came inexpensive. More recently, work by Gal ([3]) and
the new runtime library by IBM ([1] and [6]) are notable
in promoting table-lookup algorithms. Although these
recent efforts use rather large tables and implement the
functions in software, we illustrate here that, with care-
ful design, the table sizes can be made so small that
these table-lookup algorithms become easily realizable
in hardware. Despite the size reduction, the speed and
accuracy benefits brought about by table-lookup algo-
rithms are preserved. Furthermore, we show that these
table-lookup algorithms lend themselves to a uniform
error analysis that yields tight error bounds. Typically,
a theoretical bound of 0.57 unit in the last place (ulp)
can be obtained for an implementation whose maximum
error observed over several million arguments is 0.55
ulp.

The rest of the paper is organized as follows. Sec-
tion 2 presents the general idea behind table-lookup al-
gorithms. Section 3 illustrates the idea by three specific
examples. Section 4 presents a uniform approach for a
tight error analysis and an illustrative example. Sec-
tion 5 discusses the feasibility of hardware implementa-
tions of table-lookup algorithms. Section 6 makes some

Government work not protected by

us.
U.S. Copyright.

232

concluding remarks on the advantages of table-lookup
algorithms over CORDIC ([9]) and ordinary (without
table-lookup) polynomial algorithms.

2 Table-Lookup Algorithms

Let f be the function to be implemented and I be the
domain of interest. A typical table-lookup algorithm
contains a set of “breakpoints” c¢x,k =1,2,...,N in [
and a table of N approximations T} to f(ci). For any
input argument z € I, the algorithm calculates f(z) in
three steps.

Reduction: For this given z, the algorithm selects an
appropriate breakpoint c;. (In general, ¢; is the
breakpoint closest to z.) It then applies a “reduc-
tion transformation”

r = R(z,ck).
A typical case is R(z,¢cx) = 2 — ¢

Approximation: The algorithm now calculates f(r)
using some approximation formula

p(r) = f(r).
Very often, p is a polynomial.
Reconstruction: Based on the reduction transforma-
tion R, the values f(cz) and f(r;, and the nature

of f, the algorithm calculates f(z) by a reconstruc-
tion formula § :

f(z) S(f(ex), f(r))

S(f(cx), p(r))
S(Tx, p(r))-

~
~

Although a traditional polynomial or rational-function-
based algorithm (see [2] and [4]) can also be expressed
in these three steps, there are two properties peculiar to
a table-lookup algorithm. First, the reduction process
in a table-lookup algorithm is much more flexible since,
unlike a traditional algorithm, the choice of breakpoints

is basically independent of the function f in question.
In most situations, the breakpoints are chosen so that
the reduced argument r can be computed efficiently on
the particular machine in question. Second, in a table-
lookup algorithm, the magnitude of the reduced argu-
ment r can be made as small as one wishes, limited
only by the table size one can accommodate. We now
illustrate these ideas by three realistic examples.

3 Algorithms for 2%, logz, and sinz

The functions 2%, log z, and sinz are among the most
commonly used elementary functions. We have pur-
posely chosen different bases for the exponential and
logarithm functions (base 2 and e, respectively) to illus-
trate the flexibility of table-lookup algorithms.

The algorithms here calculate the functions on “pri-
mary” domains. Transformations of arguments to such
domains are standard and well known %see [2] and [4]).

3.1 2% on [-1,1]
Reduction: Find the breakpoint cx = k/32,k =
0,1,...,31 such that
|z — (m+cx)] < 1/64,
where m = —1,0, or 1. Calculate r by r = [z —

{(m + ¢;)] - (log 2). Note that |r| < log2/64.

Approximation: Approximate e” —1 by a polynomial
or),

p(r) =r+pir’+ -+ par™th

The coefficients py, p2, - . ., pn can be determined by
applying the Remes algorithm {14] to the function
e” — 1 on the interval [—log2/64,log2/64].

Reconstruction: Reconstruct 2% by the relationships

2m+c,, . er

2™ (2% 4 2% (e" — 1)}
27{2% + 2% - p(r)}
2m {T’, + T - p(T)}.

22

e

T =~ 2% k =0,1,...,31, are the tabulated values.

3.2 logz on [1,2]

Reduction: If z < e!/1% compute log(z) by a simple
polynomial approximation and exit. This polyno-
mial is designed to approximate log(z) on [1, e'/19]
(see [13] for details). Otherwise, find the break-
point ¢,y = 1+ k/64,k = 0,1,...,64 such that

|z — ex| < 1/128.

Calculate r by » = 2(x — ¢;)/(z + cx). Note that
|r| < 1/128.

233

Approximation: Approximate log(x/cy) by an odd
polynomial p(r):

p(r) =74+ pir® + par® + -+ par?ttL

The coefficients p1,p2,...,pn can be determined
by applying the Remes algorithm to the function
log([1 + r/2]{[1 — r/2]) on the interval [0,1/128]
using odd polynomials. Note that

log (é) = log(ij z)
(1) +5 () +53)+).

Reconstruction: Reconstruct logz by the relation-
ships

il

log(cx) + log(z/ck)
log(cx) + p(r)
T + p(r).

log(z)

QR

Ty = log(cx), k = 0,1,..

values.

.,64, are the tabulated

3.3 sinz on [0,7/4)

Reduction: If |z| < 1/16, calculate sinz by a sim-
ple polynomial approximation. Otherwise, find the
breakpoint ¢ of the form
cr=277(1+k/8) j=1,2,3,4 k=0,1,...,7

that is closest to z. Calculate r by r = = — ¢j;.

Note that |r| < 1/32.

Approximation: Approximate sinr — r and cosr — 1
by polynomials p and ¢, respectively:

p(r) = pir® + por’ + -4 par® Y

g(r) = qrt + gert + -+ gr®™.

The coefficients py, pa, ..., Pn; 41,92, - - -, ¢m €an be
determined by applying the Remes algorithm to the
functions sinr — r and cos? — 1 on the interval
[0,1/32] using odd and even polynomials, respec-
tively.

Reconstruction: Reconstruct sin(z) by the relation-
ships

sin(z) sin(cj + 1)

sin(c]-k) cosT + cos(cjk) sinr
sin(cjk) + 7 cos(cjx)

+(sin(c;k)q(r) + cos(c;x)p(r))
Six +rCjk + (Sjra(r) + Cirp(r)).

1l

22

Table 1: A Realistic Set of Algorithms for IEEE Double
Precision

No. of No. of
Function | Table Entries | Coefficients
2% 32 n=>5
log z 64 n=2
sinz 64 n=3,m=3

To conclude this section, we tabulate in Table 1 the ta-
ble size and coefficient requirements for a realistic set of
algorithms tailored to IEEE double precision. Clearly,
this is one particular choice out of the many possible
combinations of breakpoints and approximating poly-
nomials. Take 27, for example: one can reduce the ta-
ble size to 16 by increasing n to 6 (hence the price of
an add and multiply). Optimal choice is an engineering
issue whose answer depends on the particular project in
question.

4 Error Analysis
Recall the three steps of calculating f at z:

Reduction: r = R(z, ck).
Approximation: p(r) ~ f(r)
Reconstruction: f(z) = S(f(ck), f(r)) = S(Tk, p(r))

Because of inexact computations, we obtain 7 instead

of r, p instead of p, and S instead of S. Hence, the
computed result is

S(Tk, 7(7)).

The goal of the error analysis is to estimate accurately
the difference

IS(f(ck), £(r)) = S(Tx, ().
We apply the triangular inequality. Thus,

[S(f(ex), £(r)) = $(Te, (7))

< IS(f(ex), f(r)) — S(f(ex), F(7)] +
[S(f(ex), £(F)) — S(f(ex), p(F)] +
[S(f(cx), p(7)) = 8(T, 5(7))]

< Ei+ E;+E;s.

In most situations,

E, < constant-|f(r) — f(#)]

~ constant - |f'(r)| - |r — 7|

and
E, < constant - max |£(t) — p(t)].

234

E; can be easily estimated because the reduction pro-
cess R is usually so simple that |7 — #| can be estimated
tightly. E5 can also be easily estimated since the nu-

merical value
max | () - (1)

is obtained when the polynomial is sought, usually by
the use of the Remes algorithm. The maximum is taken
over the domain of approximation.

Let us make a short digression for those interested in
our implementation of the Remes algorithm. The ver-
sion of Remes algorithm we use is the one-point ex-
change algorithm (see [10] for example) as opposed to
a multiple-exchange algorithm ([14]). Moreover, the ex-
change scheme is based on the simplex algorithm which
is a generalization of that based on sign alternations
(see [11] for details). These specifics allow the algorithm
to handle non-Haar systems as well as approximation of
discontinuous functions. Moreover, the domain does not
need to be discretized, because

E, = max |(t) - p(1)|

is calculated by searching the zeros of f'(t)—p/(t) by nu-
merical root finder. Consequently, the numerical value
of E, we obtain is accurate to many digits. This ac-
curacy is definitely sufficient for the purpose of error
analysis, because most of the time we need only one or
two digits of E, (see below).

We return to the discussion on errors. The rounding

error)

E3 = |S(f(ck), (7)) — S(Tk, B(7))|
in calculating the polynomial and reconstruction is usu-
ally the most difficult to estimate tightly. With the
use of table-lookup algorithms, however, the analysis is
greatly simplified. The reason is that the magnitude of
the reduced argument r (or 7) is typically so small that
rounding errors associated with r¥ &k > 2, are practi-
cally zero. The simplicity of the analysis in [12] and [13]
illustrates the situation.

To illustrate the ideas here, we carry out the analysis of
2% for a typical IEEE double-precision implementation.
Let € denote 1 ulp of 1, i.e., ¢ = 2752, Clearly, the sub-
traction s := z — (m + ¢;) is exact. Hence the errors in
the reduction step are those caused by the multiplica-
tion by log2 and the fact that the value “log2” used is
only a 53-bit approximation:

T =

r

slog2, and
s(log 2+ 6;) + &2,

where 6, is the error in the approximation to log 2, and
8 is the error caused by the finite-precision product.
Now,

log2 = .69314718...€ 27! . [1,2).

Therefore, rounding (as opposed to truncating) log2 to
working precision (53 bits in our case) gives an error no

bigger than {1e = 272%¢. Hence |6;] < 27 2¢. Next,

|s - (log2 + 61)| < log2/64 + 6, /64.

Since log 2/64+6; /64 € 277-[1,2), rounding the product
s(log2/64 + 6,) to working precision gives an error no
bigger than 2~%¢. Hence, |65] < 2~8¢. Therefore,

Ir—#| < |861] + |85] < 27 7.
Hence,
d , - -7
|E1|S|a—ie 'IT—T"S].O?XQ €.

Next, the best approximating polynomial p obtained by
a Remes algorithm gives

I(e" = 1) = p(t)] < 27%° =271,
Thus,

It] < log2/64.

|Ey| < 27 1€

Finally, we estimate the errors in computing p(#) and
the final reconstruction. Since 2°* is not representable
in 53 bits, we use 2 variables T} and 73 where T) is
2¢ rounded to 53 bits and T3 is a correction term that
makes T + T = 2°* for all practical purposes. (Note
that a T3 having 6 significant bits will be sufficient.)
The reconstruction is

2™+ (Ty xp+ T3)).

Scaling by 2™ is exact. The last add contributes no more
than 0.5 ulp of error. Estimating the error in T} * p+T5
is simple: Since |#2| < 2=12, the only significant error in
calculating p is the last add. Thus the computed result
is

2* +6)(p+862)+ T2+ 63

Qckp+T2 + 61p+ 692% + (53,

where [p| < 276, |6;] < 271¢, |62 < 277¢, and |63] <
276,

The rounding error is bounded by

1
|Bs] < Sulp+ 27742754275 2™
1
< 3 ulp+ (277 4+ 2 %) ulp
< 0.54ulp.
Consequently,

|E1| + |E2| + | E3| < 0.556 ulp.

Note that in the case ¢; = 0 (in particular, |z] < 1/64),
the bound given here is pesimistic because no error will
be committed in Ty * p+ T, for Ty = 1 and Ty = 0.

5 Feasibility of Hardware Implementa-
tions

Table-lookup algorithms have been implemented suc-
cessfully in software ({6] and [12], for example). With
today’s VLSI technology and the algorithms’ flexibility,
hardware implementations also seem extremely feasible.
In what follows, we reexamine the algorithm for 2% in
Section 3.1 from the point of view of hardware imple-
mentation.

235

Table Size: The table required here has 32 double-
precision values. Assuming 8 bytes of storage per
entry (although one can device more compact stor-
age schemes), this table is only 2 kbits. Such a
table is easily accommodated by today’s standard.

Reduction and Table Lookup: Consider the reduc-
tion for |z| > 1/16 where z is an IEEE double-
precision number. Thus

r= (—1)s . 2k . (1b1b2 .. -b52)baseZu

where s € {0,1},k € {—1,—2}. Now, mathemati-
cally,

m + ¢, = round-to-integer(32z)/32,

and both m and ¢; are determined by the seven
bits of information s, Isb(k), and {b1,bs,...,b5}.
Clearly, simple multiplexers can be constructed to
deliver both m + ¢; and T}.

Approximation and Reconstruction: Most hard-
ware performs IEEE sums and products via an in-
ternal data format that has a longer mantissa and a
wider exponent field than the working precision in
question (say double precision or double-extended
precision) in question. The longer mantissa typ-
1cally contains the guard, round, and sticky bits
that ensure correct IEEE rounding; and the in-
ternal exponent field typically contains two extra
bits designed to accommodate products of working-
precision values of extreme magnitudes, say, two
smallest denormalized numbers. Rounding and ex-
ception handling are usually performed separately
during conversion of internal formats back to the
working precision.

It is not hard to see that the approximation and
reconstruction steps in Section 3.1 can be carried
out solely in the internal format. First, provided
the internal exponent field has two extra bits, the
recurrence

r+pir’ 4+ psr®
r+ror-(prtro(p2t+rops))

p(r)

and the reconstruction
2Ty + T - p(r)

where |r| < log 2/64 will not overflow or underflow.
(Note that the coefficients p; = 1/;! are moderate
in magnitude.) Second, note that there is no need
to round any of the intermediate results to work-
ing precision. In fact, keeping the extra guard and
round bits would enhance the accuracy. Perform-
ing these two steps without the need of rounding
or error checking will clearly save a good amount of
time compared to full IEEE operations everywhere.

6 Concluding Remarks

Table-lookup algorithms offer several advantages over
traditional polynomial/rational-funtion algorithms and
CORDIC algorithms. In comparison, a table-lookup al-
gorithm is generally

1. faster because it requires less work in the approxi-
mation steps,

2. more accurate because the rounding error made in
the approximation step is tiny, and

3. amenable to tight error analysis.

CORDIC algorithms have been attractive from a hard-
ware point of view because they require only shifts
and adds (see [9] for example). The price one has to
pay for this simplicity is a relatively large number of
iterations of pseudo-division (reduction) and pseudo-
multiplication (reconstruction). Advances in VLSI tech-
nology have now made it possible to realize basic oper-
ations such as primitive floating-point adds and multi-
plies (that is, without rounding or exception handling)
on the order of a few clocks on modern hardware. In
such hardware environments, table-lookup algorithms
are extremely feasible alternatives to CORDIC.

Acknowledgement

This work was supported by the Applied Mathematical
Sciences subprogram of the Office of Energy Research,
U. S. Department of Energy, under Contract W-31-109-
Eng-38.

References

(1] R. C. Agarwal, J. W. Cooley, F. G. Gustavson, J.
B. Shearer, G. Slishman, and B. Tuckerman, New
scalar and vector elementary functions for the IBM
System/370, IBM Journal of Research and Devel-
opment, 30, no. 2, March 1986, pp. 126-144.

[2

—

W. Cody and W. Waite, Software Manual for the
Elementary Functions, Prentice-Hall, Englewood
Cliffs, N.J., 1980.

[3] S. Gal, Computing elementary functions: A new
approach for achieving high accuracy and good
performance, in Accurate Scientific Computations,
Lecture Notes in Computer Science, Vol. 235,
Springer, New York, 1985, pp. 1-16.

J. F. Hart et al., Computer Approzimations, John
Wiley and Sons, New York, 1968.

D. Hough, Elementary functions based upon IEEE
arithmetic, Mini/Micro West Conference Record,
Electronic Conventions, Inc., Los Angeles, 1983.
[6] IBM Elementary Math Library, Programming RPQ
P81005, Program number 5799-BTB, Program Ref-
erence and Operations Manual, SH20-2230-1, Au-
gust 1984.

236

[7] IEEE standard for binary floating-point arithmetic,
ANSI/IEEE Standard 754-1985, Institute of Elec-
trical and Electronic Engineers, New York, 1985.

[8] P. W. Markstein, Computation of elementary func-

tions on the IBM RISC System/6000 processor,

IBM Journal of Research and Development, 34, no.

1, January 1990, pp. 111-119.

[9] R. Nave, Implementation of transcendental func-

tions on a numeric processor, Microprocessing and

Microprogramming, 11, 1983, pp. 221-225.

[10] M. J. D. Powell, Approzimation Theory and Meth-

ods, Cambridge University Press, Cambridge, 1981.

P. T. P. Tang, A fast algorithm for linear complex
Chebyshev approximations, Mathematics of Com-
putation, 51, no. 184, October 1988, pp. 721-739.

[11]

[12] P. T. P. Tang, Table-driven implementation of the
exponential function in IEEE floating-point arith-
metic, ACM Transactions on Mathematical Soft-
ware, 15, no. 2, June 1989, pp. 144-157.

[13] P. T. P Tang, Table-driven implementation of the
logarithm function in IEEE floating-point arith-
metic, ACM Transaclions on Mathematical Soft-
ware, 16, no. 2, December 1990, pp. 378-400.

[14] L. Veidinger, On the numerical determination of
the best approximation in the Chebyshev sense,
Numerische Mathematik, 2, 1960, pp. 99-105.

