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We describe a table compression method employing

finite precision linear interpolation in reciprocal tables.
The interpolation method employs a compressed look-
up table and a small sized multiplier to yield an output
reciprocal as a simple direct operation. The leading bits
of the arbitrarily precise input are used to indez the ta-
ble and a limited number of succeeding fractional bits
are used to interpolate on the table employing a mul-
tiply/add operation. The low order bits of the product
are rounded off so the output reciprocals are guaranieed
correct to a unit in the last place, and provide a round-
to-nearest reciprocal for over 90% of arbitrarily precise
input erguments. The interpolation method generates
2k-bit faithful reciprocals employing a k-bits-in 2k + 2-
bits-out table and a (k + 3) x (k + 3) bit multiplier.
A single precision faithful reciprocal can be generated
employing a table of size 13 Kbytes and a 15 x 15 bit
multiplier, compared to a table size of 46 Mbyles for
conventional reciprocal tables. The table and dedicated
small multiplier efficiently characterize a functional re-
ciprocator unit with at most a couple of cycle latency.

1. Introduction and Summary

With the density of transistors that can be realized
in an integrated circuit on a single chip rising so rapidly,
it has become increasingly common for arithmetic cir-
cuits to include a reciprocal table to either assist or re-
place the division instruction. For low precision arith-
metic computation, direct use of a suitably large recip-
rocal table [OL 91], or applying bipartition [DM 95] or
interpolation [DM 96, Fa 81, IT 95, Na 87, WG 95] with
a moderate sized such table, provides an easy to imple-
ment efficient alternative to a division instruction. In
particular, a single precision floating point reciprocal
instruction as a short latency operation with a moder-
ately sized hardware implementation is very attractive
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for fast 3-D graphics. For high performance implemen-
tation of IEEE standard 754 double or double extended
floating point division, the faster multiplier based itera-
tive division algorithms such as Newton Raphson, con-
vergence, prescaled, and short reciprocal method [BM
93, BM 95, DG 89, FS 89, Ka 91] initially employ a
a seed reciprocal of the divisor typically provided by a
reciprocal table.

The limitation of the conventional reciprocal tables
1s that an attempt to enhance the accuracy of the seed
reciprocal by just one bit results in more than doubling
the table size. How can one obtain more accurate re-
ciprocals at acceptable costs in time and area? This
question represents a research area with important im-
plications in the designs of fast division algorithms for
graphics and floating point units. Qur contribution to
this end is to define and show how to construct finite
precision linear interpolation in reciprocal tables.

The accuracy standard for our interpolated recip-
rocal table output is obtained in that the reciprocal
provided will be guaranteed to be correct to a unit in
the last place, ¢.e. less than one ulp deviation from
the infinitely precise reciprocal of the arbitrarily pre-
cise input argument, As a secondary goal, we also at-
tempt to maximize the percentage of input arguments
that are rounded to nearest. To provide standards for
measuring compression and overall accuracy, we first
provide the optimal results in table size minimization
and portion round to nearest maximization that can
be obtained by conventional reciprocal tables.

Reciprocal tables are generally constructed by as-
suming that the argument is normalized 1 € 2 < 2
and truncated to k bits to the right of the radix point,
trunc(z) = 1.b1by...b;. These k bits are used to index
a table providing m output bits which are taken as the
m bits after the leading bit in the m+1 bit fraction re-
ciprocal approximation recip(z) = 0.15{0%...b],. Such
a table is termed a k-bits-in m-bits-out reciprocal table
of size 2¥m bits. The accuracy of reciprocal tables was
thoroughly investigated by us in [Da 95] and [DM 94].

In [DM 95] we defined as faithful those i-bits-in j-



bits-out reciprocal tables for which the output always
satisfies a one ulp bound, and as max RN those tables
which maximize the portion of input 1 < 2 < 2 which
yields an output reciprocal that is a round-to-nearest
value of . In [DM 95] we also presented the midpoint
reciprocal algorithm which generates minimum sized ta-
bles to guarantee faithful reciprocals for each table en-
try, and for faithful tables maximizes the percentage
of input values obtaining round-to-nearest output. We
showed that for ¢ > 1 indicating a number of input
guard bits, the j 4 g-bits-in, j-bits-out reciprocal ta-
bles generated by the midpoint reciprocal algorithm are
both faithful and max RN for any g > 1 and all j > 1.
The percentage round-to-nearest was shown to be of
the order 88% even with the smallest number ¢ = 1 of
input guard bits for which one ulp guaranteed output
is obtained,

In Section 2 we first define finite precision linear
interpolation and the errors associated with it. We
then describe our finite precision interpolation method
that employs a compressed reciprocal look-up table and
a small sized multiplier to yield an output reciprocal
as a simple direct operation.

A (2k 4 ¢)-bits-in, 2k-bits-out interpolated recipro-
cal 1s constructed by assuming the infinitely precise
argument 1s normalized 1 < = < 2 and truncated to
2k + g places to the right of the radix point, trunc(z)
= 1.b1b5...b21+4. The interpolation procedure is de-
scribed by reference to the logic circuitry illustrated in
Figure 1. The figure shows the 2k+3-bit input trunc(z)
and a 2k-bit faithful reciprocal recip(z) = 0.1b'1b12...b;,c
as output. The interpolation steps are:

1. the 2k + 3 bits of the truncated input argument
trunc(z) are partitioned into high, and low fields,
zy, and [, of sizes k and k + 3 biats respectively,

2. the leading (high) & input bits x index a recip-
rocal table which yields a 2k 4 2-bit table output
c1(zp) and 1mplicitly the difference of successive
table outputs ca(zn) = ci(zn) - ei(zs + 2%) in
the borrow-save form which are fed into the Mul-
tiply/Add unit as addend and multiplier inputs
respectively,

3. the k + 3 fractional (low) bits f are fed into the
Multiply /Add unit as the multiplicand input,

4. The mterpolated reciprocal of the 2k + 3«bit in-
put trunc(s) = on + 27k ¢ f is computcd by the
fused product sum operation recip(z) = ¢1(zs) —
e2(2r) % f in the Multiply/Add unit. The low
order guard bits of the product sum are rounded
off (chopped) to obtain a 2k-bit reciprocal value
guaranteed correct to 1 ulp.
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Figure 1. A 2k+3-bits-in 2k-bits-out faithful in-
terpolated reciprocal

Our principal result in Section 3 is that our interpo-
lation method described in Section 2 requires only a
few input and fable guard bits to guard against the fi-
nite precision errors compounding with the theoretical
real interpolation error and failing to guarantee faith-
ful reciprocals. Specifically, the interpolation method
is proved to generate 2k-bit faithful reciprocals employ-
ing a k-bits-in 2k+2-bits-out table and a (k+3)x (k+3)
bit multiplier. A single precision faithful reciprocal can
thus be generated employing a table of size 13 Kbytes
and a 15 x 15 bit multiplier, compared to table sizes
of 46 Mbytes and 544 Kbytes for conventional recip-
rocal tables and bipartite tables [DM 95] respectively.
The use of such a small sized multiplier allows the in-
terpolation process to yield a single precision faithful
reciprocal with only a couple of cycle latency.

In Section 4 we describe a method which modifies
the table construction method presented in Section 2 to
improve the percentage of inputs which obtain round-
to-nearest value of the interpolated reciprocal still pre-
serving the 1 ulp accuracy bound. Qur principal result
in Section 4 is that some 92% of the 2k-bit interpolated
reciprocals obtain round-to-nearest value compared to
only about 80% with the unmodified algorithm of Sec-
tion 2 and an upper bound of some 97% of the 2k-bit
reciprocals from an optimal 2k + 3-bits-in 2k-bits-out
reciprocal table. This is obtained despite the great
variance of the sizes of the tables employed.

In Section & we present some concluding remarks
ahd compars our table compression and accuracy with
some other methods of interpolation in the literature.
We also briefly discuss the possible application of our
interpolation method for computing values of other
mathematical functions.



2. Finite Precision Linear Interpolation

Linear interpolation is a well-known technique to ap-
proximate a non-linear function such as the reciprocal
function [DM 96, Fa 81, Fe 67, I'T 95, Na 87, SO 93] by
a linear function. Consider f(z) = i— to be the recipro-
cal function in the interval [a, §]. Let g(z) = ¢1 +coz be
the linear approximation to f(z) in [a, 8]. The process
of approximating f(z) by ¢(z) is called linear interpo-
lation, More precisely when z, ¢y, c2, and g(z) are all
reals (infinitely precise), we refer to g(x) as the infinite
precision interpolation of f(z) in [a, b]. Figure 2 shows
such an interpolation for reals. The dashed line C rep-
resents the interpolated values of the reciprocals. The
only error involved in such an infinite precision interpo-
lation for an input  is the difference g()— f(z) which
we call interpolation error. A closed form solution to
determine the optimal values of ¢ and ¢o which mini-
mize the maximum relative error in the interval [a, b] is
given in [SO 93]. The minimum value of the maximum
absolute error for the infinite precision interpolation
can be easily found with reference to Figure 2. Line C
in Figure 2 minimizes the maximum absolute error of
interpolation in the interval [, b]. Line C is constructed
parallel to the line A formed by joiming the points ¢ and
b and line B formed by drawing a tangent to the recip-
rocal curve with the same slope, which occurs at the
geometric mean, Vab. Line C is equidistant from line
A and line B. The computation of the optimal values
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Figure 2. Infinite precision interpolation of re-
ciprocals

of ¢1, and e¢s for interpolation in reciprocal tables to
compute a reciprocal of finite length i1s more involved
and the optimal values of ¢; and ¢4 for infinite precision
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interpolation [Fe 67, SO 93] is not applicable to the fi-
nite case where only finite values of z, ¢y, and ¢y can
be stored. Three additional errors are incurred in finite
precision interpolation: the first due to the rounding of
the table values, the second due to rounding of the in-
terpolated value, and the third because of the fact that
each interpolated value must represent the reciprocal
for an input interval rather than an input point. The
errors involved in such a finite precision interpolation
in reciprocal tables are shown in Figure 3.
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Figure 3. Finite precision interpolation in re-
ciprocal tables

Figure 3 shows one piece for the piecewise linear
interpolation implicit for interpolation in a reciprocal
table. The dashed straight line joining the end points
of the piece of the reciprocal curve shown represents
the best upper bound infinite precision interpolation
utilized which is guaranteed to upperbound the true
result. At any given point, the vertical distance be-
tween the true reciprocal curve and the dashed straight
ling i5 the error dus to best upper bound interpolation
and is called dnterpolation errer Ew. However, the ta-
ble values at the two ends of the plece are finite in
length and may be subjected to rounding. The solid
straight line shows the finite precision upperbound in-
terpolation in the rounded up table values. The vertical
distance between the dashed line and the solid line at
any given point in the figure illustrates the indepen-
dent additional rounding error due to the finiteness of
the table values and is called table discretization error
E;. Also the true reciprocal at any given point on the
reciprocal curve really represents the reciprocal for the
finite input interval rather than just that input point
because of the truncated input used to compute the re-



ciprocal. The vertical distance between the reciprocal
curve values at the end points of the input interval is
called the input discretization error E; and depends on
the width and curvature of the input interval, Finally
the interpolated reciprocals on the solid line are each
subjected to rounding (down) to yield finite precision
reciprocals shown in the figure as solid dots. For any
input interval, the maximum vertical distance between
the finite precision rounded interpolated reciprocal for
that interval and a reciprocal of any point in the input
interval is called the total error. Qur objective in this
paper is to construct reciprocal tables (¢c1 and implicit
cs) such that each finite precision interpolated recipro-
cal differs from the true reciprocal by less than a unit
in the last place. Henceforth; unless otherwise men-
tioned, interpolation refers to this compounded error
finite precision interpolation process.

We now describe the construction of a k-bits-in 2k +-
g+-bits-out reciprocal table with table output ¢y (2k+g¢;
bits). Given a 2k + g;-bit input trunc(z), the 2k-bit
reciprocal of trunc(z) is computed by interpolation in
the k-bits-in 2k + g;-bits-out reciprocal table where g¢;
and g; are the input guard bils and table guard bils
respectively. The interpolation method is formalized
by two algorithms. Algorithm 1 formalizes the table
output ¢;. Algorithm 2 formalizes the computation of
the 2k-bit reciprocal by interpolation.

Algorithm 1 [Table Construction]
Stimulus: Integers £ > 1 and g; > 1

Response: A k-bits-in 2k+g;-bits-out reciprocal table
with 2k 4 g;-bit output ¢4

Method: for i = 2* to 2¥*+! step 1 <for each input
interval [, %1-)>
begin

L1: ¢,(3) := RU(2TK22'°+9‘+1) <round-up the re-
ciprocal of the low end of the interval; round-
ing is to an integer with assumed division by
22k+91+1;: the integer is always a 2k + g, -+ 1
bit string of which the leading bit need not
be stored>

end

Algorithm 2 [Reciprocal by Interpolationin Ta-
ble]

Stimulus: 2k4 g;-bit input trune(e), k-bits-in 2k g,-
bits-out reciprocal table,

Response: A 2k-bit interpolated reciprocal recip(z)
Method: begin
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L1: trunc(z) zh + 27Ff where trunc(z) =
s, ©h = 35, and [ = zi <partition
trunc(2) into k-bit leading part z, and & +
g;-bit fractional part f>

L2: recip(y) = RZ(c1(d) - (e1(3) - e1(i + 1)) x
f) to 2k bits <lookup the table outputs for
x constructed by Algorithm 1, interpolate in
the table proportional to the fractional part
f, and round-to-zero (chop) the product sum
to 2k bits>

end

Note that the difference c;(i) — ¢1(i + 1) is implicitly
defined in the table by the pair of successive table out-
puts [e1(7), ¢1(¢+ 1)] in borrow-save form and need not
be stored separately in the table. Thus the size of
the table is only 2* x (2k + g;) bits. The time to ac-
cess two successive table outputs, and to recode the
borrow-save value in the multiplier increases the exe-
cution time only marginally [LM 95]. Nakano [Na §7)
and Ito et al [IT 95] use two tables to store the table
outputs and the differences between successive pair of
table outputs in his interpolation method resulting in
unnecessarily larger total table size. Also as the follow-
ing lemma shows, the leading k bits of ¢1(5) — ¢ (i + 1)
for 2 < i < 9%+ _ 1 are zeros. This implies that with
proper encoding of the extracted borrow-save value
[DM 97], a (k + g+ + 1) X (k + g;) multiplier is suffi-
cient for the interpolation.

Lemma 1 Let ¢,(i) = RU(%) to 2k + g, bits and
co(8) = e1(d) —e1(i + 1) be the difference of two succes-
sive {able enlries where 2% < § < 2%t — 1, Then the
leading k fractional bils of ca(t) are zeros.

Proof: The difference between the inﬁnite precision
values of ¢1(5) and ¢1(i + 1) = & — m But since the
table entries cl(z and cl(z+1) are rounded up to 2k+gt

bits, cg(7) < <

2'!
D T e S 3 — wkeny T e < o

since g; > 0. Thus the leading k fractional bits of ¢5(7)
are zeros proving the claim. O

We apply Algorithm 1 to construct a 2-bits-in 6-bits-
out table with & = 2, and ¢; = 2 and illustrate the re-
sults in Table 1. Consider for example line two of Table
1. Line two ig indexed by the two bit string 01 arising
from input truncated to the value 1.01, This truncated
input 1.01 represents the arbitrarily precise input ar-
guments falling in the input interval [1.01,1.10). The
reciprocal of the low end 1.01 of this interval is com-
puted as 0.1100110 011... and rounded-up to 6 bits to
yield the value 0.1100111 for ¢;.

,+1 + 22k+9{+1 S ‘(H’l) + 22k+gt+l <




Table 1. 2-bits-in 6-bits-out reciprocal table
constructed by Algorithm 1

input « e1(z)
1.00 xxxxx | 1.0000000
1.01 xxxxx { 0.1100111
1.10 xxxxx | 0.1010110
1.11 xxxxx | 0.1001010

We then apply Algorithm 2 to generate 4-bit recip-
rocals of 7-bit input operands (with g; = 3) by piece-
wise interpolation in the 2-bits-in 6-bits-out table con-
structed in Table 1, There are four pieces of interpo-
lation corresponding to the four table entries in Table
1. Between two successive table entries in Table 1,
25 = 32 values are interpolated generating reciprocals
of 32 7-bit input arguments contained in each input
interval of Table 1. Consider for example a 7-bit in-
put operand 1.0000111. The first 2 fraction bits of
the input operand 1.0000111, :00... is used as an in-
dex to the (2,6) bit Table 1, whose first table output
is ¢y = 1.0000000. The difference of the table out-
puts for indices 1.00 and 1.01 1s 1.0000000 - 0.1100111
= 0.0011001 which we call ¢;. Note that the leading
two bits of ¢g are zeros as proved in Lemma 1. The
last 5 fractional bits f = 0.00111 of the input operand
1.0000111 is multiplied with cs to get the term cp x f
which is then subtracted from ¢y with the fused prod-
uct sum operation and then rounded-down to 4 bits
to yield the value 0.11110 as a reciprocal of the input
operand 1.0000111. Note that a 2-bits-in, 6-bits-out
reciprocal table and a 5 X 5 multiplier are required
for this interpolation. Each of the 4-bit reciprocals of
the 7-bit input arguments generated by Algorithm 1
and Algorithm 2 is faithful. In the following section
we show that the 2k-bit reciprocals of 2k + 3-bit input
argnments obtained by interpolation in the &-bits-in
2k + 2-bits-out table constructed by Algorithm 1 are
guaranteed to be faithful.

3. Faithful Reciprocal by Interpolation

In this section we show that only a few input and
table guard bits are required to guard against the input
diseretization error and table discretization error com-
pounding with the theoretical real interpolation error
and failing to guarantee faithful reciprocals.

We first formally define the three errors, namely in-
terpolation error, table discretization error, and input
discretization error associated with our finite precision
linear interpolation, which we explained earlier with
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reference to Figure 3.

Consider any 2k + ¢;-bit input argument ﬁ-fLs, where
22k+9i < § < 9%+9itl whose 2k-bit reciprocal is gen-
erated by the interpolation described in Algorithm 2 in
a k-bits-in 2k + g¢-bits-out table constructed by Algo-
rithm 1. Let 7; be the infinitely precise reciprocal of
Wﬂ—gi, and I; be the interpolated value of its reciprocal
assuming the table outputs to be infinitely precise, and
I}g‘) be the interpolated value of the reciprocal where
the table outputs are rounded up to 2k + g; bits,

Egﬂ,) = I; —T; in ulps is defined as the interpolation
error. Ef,’;) > 0 since the reciprocal function f(z) is a
convex function with the slope monotonically decreas-
ingin 1 < 2 < 2. Eo, = maz; ES) is defined as the
mazimum wierpolation error.

B = I](g‘) — I; in ulps is defined as the table dis-
cretization error. Efj ) > 0 since the table outputs are
rounded up in Algorithm 1. E; = maz; Egj) is defined
as the maezimum table discretization error.

Finally E,(’) = T; — Tj41, the difference in ulps be-
tween the reciprocals of the two ends of the input inter-
val [52dis ) ghits;) is defined as the input discretization
error. E,(J ) > 0 since T; decreases monotonically with
mcrease in j. B; = mazx; Ezp) 18 defined as the mazi-
mum nput discretization error.

ERROR; = I*) =Ty = B + B 4 BY is the
total error in ulps in computing the unrounded recip-
rocal of the j** input argument W‘%; by our method
of linear interpolation. Clearly ERROR; > 0. Also, if
ERROR; < 1 for all j, then the rounded down value
of the interpolated reciprocal generated by Algorithm
2 will be faithful since the rounding error introduced
in the final round-down operation is less than 1 ulp.

Table 2 shows the values of T}, I;, and I}g’), and

Table 3 shows the values of Eg), Et(j ), E,(j ) , and
ERROR; for the first piece of interpolation in a 2-bits-
in, 6-bits-out table to produce 4-bit faithful reciprocals
of 7-bit input operands. Consider for example line eight
of Table 2. It corresponds to the 7-bif chopped input
13, The infinite precision reciprocal, T;, the infinite
precision interpolated reciprocal, J;, and the finite pre-
cision interpolated reciprocal , IJ(-g')

, of this chopped

30.3407
. - 32
, respectively. The finite precision

interpolated reciprocal is then rounded down to a 4-bit
interpolated reciprocal %—g-. Now consider line eight of
Table 3 which corresponds to the interpolation of the
chopped input 132 shown in line eight of Table 2. ES)

1
128
given in ulps = 30.6000 - 30.3407 = 0.2593 ulps. E
given in ulps = 30.6328 - 30.6000 = 0.0328 ulps.

input are given to several decimal places as
30,6000 and 30.6328
37 32



Table 2. First piece of interpolation in 2-bits-
in,6-bits-out table to generate 4-bit recipro-
cals of 7-bit input arguments

Table 3. Errors in first piece of interpolation
in 2-bits-in,6-bits-out table to generate 4-bit
reciprocals of 7-bit inputs

Chopped | Ini. Prec. Inf. Finite RD Chopped | ES E? EY 1T ERROR,
Input Recip. Interpol. | Interpol. | Recip. Input (ulps) (ulps) (ulps) (ulps)
x(1/128) | x(1/32) | x(1/32) | x(1/32) | %(1/32) x(1/128)
128 32.0000 | 32.0000 | 32.0000 32 128 0.0000 | 0.0000 | 0.2481 | 0.2481
129 31.7519 | 31.8000 | 31.8047 31 129 0.0481 | 0.0047 | 0.2442 | 0.2970
130 31.5077 | 31.6000 | 31.6094 31 130 0.0923 | 0.0094 | 0.2405 | 0.3422
131 31.2672 | 31.4000 | 31.4141 31 131 0.1328 | 0.0141 | 0.2369 | 0.3838
132 31.0303 | 31.2000 | 31.2188 31 132 0.1697 | 0.0187 | 0.2333 | 0.4218
133 30.7970 31.0000 31.0234 31 133 0.2030 0.0234 0.2298 0.4563
134 30.5672 30.8000 30.8281 30 134 0.2328 0.0281 0.2264 0.4874
135 30.3407 | 30.6000 | 30.6328 30 135 0.2593 | 0.0328 | 0.2231 | 0.3152
136 30.1176 | 30.4000 | 30.4375 30 136 0.2824 | 0.0375 | 0.2198 | 0.5397
137 29.8978 | 30.2000 | 30.2422 30 137 0.3022 | 0.0422 | 0.2167 | 0.5610
138 29.6812 | 30.0000 | 30.0469 30 138 0.3188 | 0.0469 | 0.2135 | 0.5792
139 29.4676 | 29.8000 | 29.8516 29 139 0.3324 | 0.0516 | 0.2105 | 0.5944
140 29.2571 | 29.6000 | 29.6563 29 140 0.3429 | 0.0562 | 0.2075 | 0.6066
141 29.0496 | 29.4000 | 29.4609 29 141 0.3504 | 0.0609 | 0.2046 | 0.6159
142 28.8451 | 29.2000 | 29.2656 29 142 0.3549 | 0.0656 | 0.2017 | 0.6223
143 28.6434 | 29.0000 | 29.0703 29 143 0.3566 | 0.0703 | 0.1989 | 0.6259
144 28.4444 | 28.8000 | 28.8750 28 144 0.3556 | 0.0750 | 0.1962 | 0.6267
145 28.2483 | 28.6000 | 28.6797 28 145 0.3517 | 0.0797 | 0.1935 | 0.6249
146 28.0548 | 28.4000 | 28.4844 28 146 0.3452 | 0.0844 | 0.1908 | 0.6204
147 27.8639 | 28.2000 | 28.2891 28 147 0.3361 | 0.0891 | 0.1883 | 0.6134
148 27.6757 | 28.0000 | 28.0938 28 148 0.3243 | 0.0937 | 0.1857 | 0.6038
149 27.4899 | 27.8000 | 27.8984 27 149 0.3101 | 0.0984 | 0.1833 | 0.5918
150 27.3067 | 27.6000 | 27.7031 27 150 0.2933 | 0.1031 | 0.1808 | 0.5773
151 27.1258 | 27.4000 | 27.5078 27 151 0.2742 | 0.1078 | 0.1785 | 0.5604
152 26.9474 | 27.2000 | 27.3125 27 152 0.2526 | 0.1125 | 0.1761 | 0.5413
153 26.7712 | 27.0000 | 27.1172 27 153 0.2288 | 0.1172 | 0.1738 | 0.5198
154 26.5974 26.8000 26.9219 26 154 0.2026 0.1219 0.1716 0.4961
155 26.4258 | 26.6000 | 26.7266 26 155 0.1742 | 0.1266 | 0.1694 | 0.4702
156 26.2564 | 26.4000 | 26.5313 26 156 0.1436 | 0.1312 | 0.1672 | 0.4421
157 26.0892 | 26.2000 | 26.3359 26 157 0.1108 | 0.1359 | 0.1651 | 0.4119
158 25.9241 | 26.0000 | 26.1406 26 158 0.0759 | 0.1406 | 0.1630 | 0.3796
159 25.7610 | 25.8000 | 25.9453 25 159 0.0390 | 0.1453 | 0.1610 | 0.3453
160 25.6000 | 25.6000 | 25.7500 25 160 0.0000 | 0.1500 | 0.1590 | 0.3090

Ei(j) given in ulps = 30.3407 - 30.1176 = 0.2231 ulps.
The total error, FRROR;, for the interpolated recip-
rocal in line eight is 30.6328 - 30.1176 = 0.51562 ulps
which equals EQ + Et(’) + E?). Note that after the
interpolated reciprocal is rounded down to 4 bits to
vield —g—g the maximum error is only 0.3407 ulps mak-
ing it faithful. For overall reduction of the table and
multiplier size, we find minimum numbers of input and
table guard bits, g; and g;, such that the interpolated
reciprocals are faithful. We compute ERROR,the the-
oretical upper bound on ERROR;, as Ee + E; + E;,
by considering the upper bounds on the maximum pos-
sible values of E((,Z;), Et(j ), and E,(j ) separately.
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Note that these maximum errors can occur for dif-
ferent inputs. However as we will show later, Eo and
E; attain their maximum values in the first piece of in-
terpolation, and F; is statistically random. Also as
k increases, the maximum error realized approaches
ERROR rapidly, implying ERROR is a tight and a
certain true upper bound on the maximum realized er-
ror ERROR; for any j. If ERROR is less than one
ulp then the reciprocals are guaranteed to be faithful.

To compute E, we first show that the maximum
value of E'g,) in each piece of interpolation is realized
for the input argument corresponding to the geometric
mean of the end points of the input interval on which
the interpolation is performed. Then we show that the



supremum of all these maximum errors occurs at the
first piece of interpolation.

Lemma 2 The mazimum interpolation error in any
interval occurs for the inpul argument corresponding
to the geometric mean of the end points of the interval.

Proof: Let z be any input argument in the interval
[¢,b). Then the interpolated value of the reciprocal of
@ is given by g(2) = 1 +3 — &, and the true reciprocal
of z is given by f(a:) % Their difference is given by

h(z)=g(a)=fe) = t4+i-F-1 h(x) =-F+%
which is 0 at 2 = vab. A" (Vab) = — thlchls

negative implying h(z) achieves maximum at ¢ = Vab
and the maximum value of h(z) is 1 + 3 — 72a—b proving
the lemma.

It is interesting to note that the maximum absolute
value of the interpolation error is realized at the geo-
metric mean of the end points of an interval while the
maximum relative error has been shown to occur at the
arithmetic mean of the end points of an interval [Fe 67].

Lemma 3 Let ES™ denote the mazimum interpola-
tion error in the i*h interval [1 + 52,1+ ) where

1<i<2% Then Ego"‘) monotonically decreases with
increase in 1 and s mazimum at 1 = 1.

Proof: From Lemma 2 the maximum interpolation
error in the z'“‘ interval [1 + 52,1 4+ ) occurs
at \/ (1+ 52)(1+ 7), and is obtained as ESm) =

2 _ 9k _ -
\/1+1;‘,% \/1+;'}:) =2 (W T=='X+1) where X
;o k : k k+1 __ 1 1
= YXFI-VX _ which clearly de-

VA \/X<X+1)<f— T+V/X) ,
creases monotonically with increase in X and is max-
imum at X = 2%, Thus B&™ is maximum at i = 1,

proving the lemma. 0
Thus from Lemma 2 and Lemma 3, the maximum
value of Egjo) for any input operand 1 + ﬁ;%, where
0 < j < 2%+9i _ 1 is realized at the geometric mean
of the end points of the input interval [1,1+ ) corre-
sponding to the first piece of interpolation. In‘the next
lemma we derive the upper bound Fo, on Egﬁ,).

Lemma 4 The mazimum value of Eg) for any input
operand 1 + 55;%;—, where 0< _7 < 9%k+8i _ 1 s upper
bounded by Foo = -7;—— -+ 2—;,; in ulps.

Proof: From Lemma 2 and Lemma 3, the maximum
value of ES) for any input operand 1+ 2—3,‘1;97, where
0 < j < 2%+9: _ 1 is realized at the geometric mean
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of the end points of the input interval 1,1+ 2,,) corre-
sponding to the first plece of interpolation and is glven

in ulps as (1+TI-T —2 )2t = (14 (1+ )t

(1+ (+f
2L+ ) I = (L (L= Gt e~ g+ e -
)'— 2(1 _k_" + 22k+3 - 231?4.4 + 233-7 - ))22k+1 =
((22k W"') (23k _ET)+(241= 'Tk‘-re‘)_ )22k+1
< (2g)}+2 - 23k+3 + 24k+s)22k+1 < 2 —-;T + =57 29 Thus
Fo = l 2k+2 + 2°k in ulps, proving the lemma. O

In the next lemma we derive E, the upper bound
on E(J)

Lemma 5 The mammum value of E(’) for any input
operand 1 + srbe ] where 0 < § < 22“9* — 1 is upper
bounded by E;, = 2—t in ulps.

Proof: The rounding error for any interpolated re-
ciprocal is at most 5—15 ulps since each table entry is
rounded up to 2k + g; bits. So trivially E; = in
ulps, proving the lemma. O

In the following lemma, we compute E; by first
showing that maz; Egj ) is realized for the first input
argument in the table, and then upper bounding that
value by E;.

L
P

Lemma 6 The mazimum value of E(J) for any input
operand 1+ 2—,,‘15—, where 0 < j < 22’”‘9’ - 1 is realized

at j =0 and is upper bounded by E; = =L+ in ulps.

294
Proof: E,(j ) is the difference in ulps between the
reciprocgls of the end points of the input interval
(1 + godm, 1+ gts), where 0 < j < 9%+ g

kg 2k+g;
and is given by E(J) kaﬂ _;_] Q2+t _ ————22,‘2,,_“:}“ 22k +1
2k+4g;92k-t1 i
(ngﬂ? e )Z;kﬂ' 551y Which is clearly maximum at
i = 0. Thus maz; BY) = (1 - 270 y92k+l
j i B P
1 \-1\92k4l — 1 1
(1?(1—1—12”;1:"?1 1)221-H = (1—11+ P M(H—
F?m) )2 = 29;—-1 29,-—1(22k+9l+1) Qg' =y Thus
Ez = 2—9—r in ulps, proving the lemma. O

In the next lemma we derive the upper bound
ERROR on the maximum total error ERROR; .

Lemma 7 The marimum value of ERROR, is upper
bounded by FERROR = —n— + 2—;;:) + 5% Qg, + se=T 2,,'_,
in ulps.

Proof: ERROR = E, + E; + E;, where Eq, E;, and
E; are as derived in Lemma 4, Lemma 5, and Lemma
6 respectlvely Substltutlon ylelds ERROR (— -
2k+, + ng)+ 557 T 29‘._1 ulps, proving the lemma. O

In the following theorem we find the suitable val-
ues of g;, and g; such that interpolated reciprocals are
faithful for any input argument.



Theorem 1 A 2k-bit interpolated reciprocal of any
2k + 3-bit input operand by inierpolation in a k-biis-
wmn, 2k + 2-bits-out table 1s faithful.

Proof: It is immediate from Lemma 7 that any 2k-bit
interpolated reciprocal is faithful if ERROR < 1 ulp.
Clearlyif g; = 3, and ¢, = 2, then ERROR < 1, and so
the rounded down value of the interpolated reciprocal
will indeed be faithful, proving the theorem. O

Theorem 1 also suggests that k bits is indeed the
minimum number of bits needed to index the table to
guarantee all the 2&-bit interpolated reciprocals to be
faithful irrespective of the number of guard bits g;, and
¢: employed. If only k& — 1 bits are used to index the
table, then following an analysis similar to Lemma 4 we
obtain the maximum interpolation error to be greater
than 2 - 56; ulps which is greater than 1 ulp for any & >
2. So ERROR will exceed 1 ulp proving the following
corollary.

Corollary 1 A 2k-bit interpolated reciprocal of any
2k + g;-bit input operand by interpolation in a k — 1-
bits-in, 2k + g;-bits-out table is not guaranteed to be
faithful for any g; > 0, and g: > 0 where k > 2.

Observe that to generate a 2k-bit faithful reciprocal
by interpolation, we need a k-bits-in, 2k + 2-bits-out
table and a (k + 3) x (k +3) bit multiplier. The k-bits-
in, 2k + 2-bits-out reciprocal table requires 2%(2k + 2)
bits of storage. Compare this with the size of 2k + 1-
bits-in, 2k-bits-out reciprocal table to generate 2k-bit
faithful reciprocals directly form a table, which requires
22k+1(2k) bits of storage. Thus generating a single pre-
cision faithful reciprocal by interpolation in the com-
pressed table requires only a 13 Kbytes table compared
to a 46 Mbytes table for direct lookup, yielding a com-
pression factor more than 3600:1. Also the small sized
multiplier (15 x 15 bit) allows the table look-up fol-
lowed by interpolation to have only a couple of cycle
latency.

4. Optimizing Percentage of Inputs RN

In the last section, we showed that 2k-bit interpo-
lated reciprocals of 2k + 3-bit inputs are guaranteed to
be faithful. In this section we show that the percentage
of inputs which obtain round-to-nearest {RN) value of
the reciprocal is over 90%, comparable to that of the
large optimal tables. The percentage of inputs round-
to-nearest for interpolated reciprocals of length 8 to 24
bits is around 80% from the straightforward application
of the Algorithm 1 and Algorithm 2. The relatively
poor performance of the percentage RN is because the
table outputs were constructed by Algorithm 1 only to
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guarantee the 1 ulp bound for the interpolated recip-
rocals. No measure was taken to optimize the table
outputs such that the mterpolated reciprocals match
the corresponding optimum reciprocals constructed by
midpoint reciprocal table [DM 94]. The theoretical er-
ror bound of 1 ulp for the pre-rounded interpolated
reciprocals is realized in actuality only for the early
pieces of interpolation where the input operands are
close to unity. Thus for those inputs the rounded down
reciprocals are close to the corresponding optimum re-
ciprocals yielding high percentage of inputs rounded
to nearest. But as the reciprocal curve becomes flat-
ter , the actual errors realized drop much below the
theoretical bound of 1 ulp, and the pre-rounded inter-
polated reciprocals approach the corresponding infinite
precision midpoint reciprocals. Consequently for those
input arguments, the final rounded down interpolated
reciprocals are likely to be 0.5 to 1 ulp below the cor-
responding infinite precision midpoint reciprocals, re-
sulting in a relatively large percentage of those inputs
not rounded-to-nearest compared to the reciprocals ob-
tained from large optimal tables.

To obtain an improved percentage of inputs round
to nearest in our interpolation, the pre-rounded inter-
polated reciprocal values should be above the corre-
sponding infintely precise middle point reciprocals by
0.5 ulp on an average so that the rounded down inter-
polated reciprocals match the round-to-nearest values
of the midpoint reciprocals with high probability. In
the modified algorithm, to improve the percentage of
inputs RN, we add a compensation factor to each table
entry such that between each pair of such table entries
the sum of the average interpolation error and the av-
erage input discretization error is very close to 0.5 ulp.
The average interpolation error between any table en-
try is about two-thirds the value of the corresponding
maximum interpolation error, and the average input
discretization error between any table entry is about
half the value of the corresponding maximum input
discretization error. The compensation factor for each
table entry is computed from the errors in its two adja-
cent input intervals and is derived in {Da 95]. Herein,
we just describe the algorithm for computing the mod-
ified table entries with the compensation factors.

Algorithm 3 [Table Construction with Com-
pensation Factors]

Stimulus: Integer k£ 2> 1

Response: A k-bits-in 2k 4 g;-bits-out table with the
compensation factors added to each table entry as
and if required.

Method: LO: tableg := 22¥+91+1 «No compensation



factor for the first table entry>

for i = 1 to 2% step 1 <for each input interval
[5r, 52)>
begin
L1: a::1+i2'—kl;b:: 1+2%;c::: 1+i2#
< Consider two successive input intervals

[a,b) and [b,¢) >

L2: errorgl) =
2
(——L—b4a‘;’3” + b—i—;logc(%ﬁ’))?%'*'l <average

interpolation error>

3 2k R
L3: e‘rrorz(-‘) = b._22—"2_ﬁi—:l~—1— <average Input
discretization error>
L4: correct; = 0.5 - error,(l) - errorz(ﬁ)

<compensation factor for table entry
table;>

ERROR; = 35 + mems + ow
<original error bound for each interval>
if ERROR; + correct; > 1 ulp
L6: then table; := RU(($224+1) x 291)
<table entry not modified>
L7: else
table; = RU((%Q”"'1 + correct;) x
29t) <modified table entry>

L5:

end

Interpolation is then performed in the k-bits-in, 2k g
bits-out table with the modified table entries as de-
seribed in Algorithm 3 to generate 2k-bit faithful recip-
rocals of 2k + g;-bit input arguments. The percentage
of inputs not round to nearest for the interpolated re-
ciprocals on the table constructed by Algorithm 3 are
computed for some values of &, g;, and ¢g¢ and are shown
in Table 4. Note that the percentages round to nearest

Table 4. Percentage of inputs not RN

2k | 9:=3,:1=2 | gi=4,9:=2 | 9:=3,9:=3
4 8.419 8.438 5.374
6 8.896 6.934 6.622
8 7.405 6.769 5.752
10 7.851 6.828 6.280
12 7772 7.161 6.120
14 7.367 6.673 6.157
16 7.535 7.119 6.078

in Table 4 compare favorably with that of the optimal
2k + 3-bits-in,2k-bits-out tables [DM 94]. Particularly
the percentage not round to nearest of the 2k-bit re-
ciprocals of 2k + 3-bit input arguments by interpola-
tion in k-bits-in, 2k -+ 3-bits-out table as constructed
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by Algorithm 3 is always within a factor of two of the
percentage not round to nearest of the optimal 2k + 3-
bits-in,2k-bits-out table despite the great variance in
size of the table utilized. The former requires only
2F(2k + 3) bits of storage whereas the latter requires as
much as 226+3(2k) bits of storage. Thus interpolation
in the modified table not only guarantees faithful re-
ciprocals but also ensures that the percentage of inputs
that are round to nearest is very close to optimal.

5. Conclusion

We described an interpolation method that employs
a compressed look-up table and a small sized multi-
plier to yield an output reciprocal as a simple direct
operation. The interpolation method generates single
precision faithful reciprocal employing a table of size
13 KBytes and a 15 x 15 multiplier. In [Da 95} we de-
veloped a method to compress the table further with a
simple scheme based on partitioning the table for dif-
ferent ranges of the input operand. Interpolation on
such a partitioned table yields single precision faithful
reciprocal employing a total table size of 7.5 KBytes
and a 17 x 15 multiplier.

There are other methods of interpolation used in the
literature. It is difficult to do a fair comparison with
those methods since none of them demonstrate faithful-
ness of the interpolated reciprocal assuming arbitrarily
precise real mnputs. We are still able to demonstrate
more reduction in table size compared to their meth-
ods. Farmwald [Fa 81] and Wong et al [WG 95] use
many look-up tables to form the approximation. Their
methods are based on expanding a Taylor series and us-
ing several terms whose coefficients are stored in the ta-
bles. In [Fa 81], the tables in conjunction with parallel
multipliers are used to speed up the convergence of the
Taylor series. In [WG 95], the table values are used in
conjunction with Wallace tree of multioperand adders
(but no multipliers) to perform Add-Table Lookup-
Add (ATA) to yield single precision function values.
However both these methods result in larger sized ta-
bles. In the ATA method [WG 95] the total table size
to yield single precision reciprocal is 8,68,352 bits com-
pared our table size of only 1,06,496 bits. The table size
in [Fa 81] is even larger than that of the ATA method
[WG 95]. Nakano [Na 87] and Ito et al [IT 95] proposed
linear interpolation schemes with both the approximate
reciprocals of the divisors and the differences between
successive approximate reciprocal divisors having to be
stored in the table. This results in a larger sized table
compared to our interpolation method since we only
store the reciprocal divisors. The differences between
successive reciprocal divisors are implicitly given in the



borrow-save form.

Our compression method exploits the mathematical
properties of the reciprocal function and are indepen-
dent of the logic minimization which can be used sub-
sequently to further reduce the size of the equivalent
PLA. Also our interpolation method can be effectively
used to compute values for other special functions such
as square root, sine, cosine, tangent, arctangent, loga-
rithm and exponential, and is currently under investi-
gation. Preserving monotonicity in the approximations
of these functions is very important along with the 1
ulp accuracy for 3-D graphics library., We have devel-
oped some techniques for such monotone interpolations
and this topic is currently under further investigation.
We believe that a single precision library of faithful
and monotone interpolation of special functions imple-
mented in hardware with compressed tables and as a
short latency operation is very attractive for 3-D graph-
ics and augers well for its inclusion in the floating point
unit designs,
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