FAITHFUL BIPARTITE ROM RECIPROCAL TABLES*

Debjit Das Sarma and David W. Matula
Department of Computer Science & Engineering
Southern Methodist University
Dallas, Texas 75275

Abstract

We describe bipartite reciprocal tables that employ
separate table lookup of the positive and negative por-
tions of a borrow-save reciprocal value. The fusion of
the parts includes a rounding so the output reciprocals
are guaranteed correct to a unit in the last place, and
typically provide a round-to-nearest reciprocal for over
90% of input arguments. The output rounding can be
accomplished in conjunction with multiplier recoding
yielding practically no cost in logic complerity or time
in _employing bipartite tables. We demonstrate these
tables to be 2 to 4 times smaller than conventional 4-
9 bit reciprocal tables. For 10-16 bit reciprocal table
lookup the compression grows from a factor of 4 to
over 16, making possible the use of larger seed recip-
rocals than previously considered cost effective.

1 Introduction and Summary

Current day designs of IEEE standard floating
point units for the platforms of workstations and PC’s
generally have substantial design effort and chip area
devoted to providing a multiplier with at most a cou-
ple of cycle latency. Newton Raphson, convergence,
prescaled, and short reciprocal division are multiplier
based iterative division algorithms that can be fine
tuned to benefit from selected fast multiplier designs.
These algorithms each provide speedups by factors of
2 to 4 over more traditional shift-and-subtract itera-
tive division algorithms. All of these multiplier based
division algorithms initially employ a seed reciprocal
of the divisor typically provided by a ROM reciprocal
table or equivalent PLA [BM 93, DM 94, EL 94, Fe
67, FS 89, Na 87, WF 91]. More bits of accuracy in
the seed reciprocals reduce the necessary number of
dependent multiply cycles, significantly reducing divi-
sion time, albiet at the cost of exponential growth in
the reciprocal table size.

An important question is then “How can one obtain
more accurate seed reciprocals at acceptable costs in
time and area ?” Clearly table compression can be ef-
fectively obtained by applying interpolation in a small
reciprocal table, but this entails the added cost of the
multiplication and/or addition to effect the interpola-
tion [Fa 81, Fe 67, Na 87]. For overall efficiency there
is a compelling need for compressing reciprocal tables

*This work was supported in part by a grant from Cyrix
Corporation and by the Texas Advanced Technology Program
Grant 003613013.

1063-6889/95 $4.00 © 1995 IEEE

17

in a manner where table look up remains a very sim-
ple direct operation and where predictability of ta-
ble accuracy is maintained. Our contribution here is
to define and show how to construct “bipartite ROM
reciprocal tables”. These tables implicitly utilize a
transparent form of interpolation avoiding any multi-
plications or additions.

An exacting standard for our bipartite reciprocal
table output is obtained in that the reciprocal pro-
vided will be guaranteed to be correct to a unit in the
last place, i.e. less than one ulp deviation from the in-
finitely precise reciprocal of the infinitely precise input
argument. For both the prescale and short reciprocal
division algorithms the size of the reciprocal effects
the size of the circuitry employing the reciprocal [BM
93, EL 94, Na 87, WF 91]. The one ulp bound pro-
vides that the reciprocals are both accurate and short.
There are many compelling arguments in the litera-
ture for providing that function approximation should
satisfy a 1 ulp bound and attempt to maximize the
percentage of input arguments that are rounded to
nearest {AC 86, BM 93, FB 91].

Our methodology gains practical value from the fol-
lowing observation. The aforementioned division algo-
rithms each apply multiplier recoding to the output re-
ciprocal from the ROM table to provide for subsequent
multiplication of the divisor and/or dividend. For this
purpose it is sufficient that the reciprocal table pro-
vide output in redundant form that may be directly
and efficiently subjected to multiplier recoding.

The bipartite ROM reciprocal table provides sepa-
rate table look up for the positive bit part and negative
bit part of a redundant binary reciprocal value. The
fusion of positive and negative bits includes a recoding
to round off a couple of low order bits to obtain the one
ulp precision guarantee. With little extra logic com-
plexity this recoding can convert the redundant binary
values -1,0,1 to the Booth recoded radix four digits -
2,-1,0,1,2 or radix eight digits -4,-3,-2,-1,0,1,2,3,4. The
Booth recoded reciprocal output from this process can
be obtained in time only negligibly greater than for the
conventional Booth recoding of the output of a tradi-
tional ROM reciprocal table [LM 95, TY 87]. Our
table compression is thus obtained at almost no cost
in logic circuit complexity or cycle time.

To provide standards for measuring compression,
we first investigate optimal results in table size mini-
mization and portion round to nearest maximization
pertaining to conventional ROM reciprocal tables.

ROM reciprocal tables are generally constructed by
assuming that the argument is normalized 1 <z<
2 and truncated to i bits to the right of the radix
point, trunc(z) = 1.b;b5...b;. These i bits are used to
index a table providing j output bits which are taken
as the j bits after the leading bit in the j+1 bit fraction
reciprocal approximation recip(z) = 0.151b5...5;. Such
a table is termed an i-bits-in j-bits-out reciprocal table
of size 2¢j bits. The accuracy of ROM reciprocal tables
from the point of view of minimizing relative error was
thoroughly investigated by us in [DM 94].

. In Section 2 we define as faithful those i-bits-in J-
bits-out reciprocal tables for which the output always
satisfies a one ulp bound, and as max RN those tables
which maximize the portion of input 1 < z <2 which
yields an output reciprocal that is a round-to-nearest
value of 1. Our principal result in Section 2 is that
for g > 1 indicating a number of input guard bits,
we determine that the j + g-bits-in, j-bits-out ROM
reciprocal tables fnerated by the midpoint reciprocal
algorithm are both faithful and max RN for anyg>1
and all j > 3. The percentage round-to-nearest is
further shown to be of the order 88% even with the
smallest number g = 1 of input guard bits for which
one ulp guaranteed output is obtained.
. A j+g-bits-in, j-bits-out bipartite reciprocal table
18 constructed by assuming the argument is normalized
1 < z <2 and truncated to j + g places to the right
of the radix point, trunc(z) = 1.b1b;...bj44. The bi-

artite reciprocal table lookup procedure 1s described

y reference to the logic circuitry illustrated in Figure
1. The figure shows j + 2 = 3k + 1 bits of input and
a faithful reciprocal of j = 3k — 1 bits as output rep-
resented in redundant binary (or multiplier recoded)
format. The lookup steps are:

1. the j+2 = 3k + 1 input bits are partitioned into
high, middle, and low fields of sizes k + 1,k k,

2. the leading 2k + 1 (~ 2;) input bits index a ta-
ble P giving a j = 3k + 1 bit positive part of a
borrow-save reciprocal value,

3. the 2k + 1 (~ 2;) bits of the high and low fields
index a table N giving a k+1 (~ };) bit negative
part of a borrow-save reciprocal value,

4. the borrow-save fraction is fused rounding off the
two low order bits with multiplier recoding as de-
sired to obtain a j = 3k — 1 bit reciprocal value
guaranteed correct to 1 ulp.

A j + g-bits-in, j-bits-out reciprocal table can have
alternative partitioning of the input j + g bits and an
alternative number of guard bits internally in the ta-
ble as desired to effect the goal of an output reciprocal
accurate to a unit in the Jast place. The size of the
P and N tables (22¥+1 x (3k +1) 4+ 2%+ x (k+1) =
2%k+2 (2k + 1) in Figure 1) is the size of the bi-
partite reciprocal table and is effected by the input
part parameterization. Our partitioning attempts to
reach the goal of total table size of order 28i+0(1) for 5
faithful output, which produces substantial compres-
sion from conventional “non redundant” reciprocal ta-
bles of size 2/+!; for faithful output.

In Section 3 we note the existance of j + 1-bits-
in, j-bits-out bipartite reciprocal tables which yield
output identical to conventional reciprocal tables for
the useful values j = 5,6,7 with total table size re-
duced by a factor of about 2. For j = 8,9 we obtain
bipartite reciprocal tables preserving faithfulness and
compressed by factors over 4 compared to the smallest
faithful conventional reciprocal tables of Section 2.

Our principal contribution in Section 4 is the de-
scription of an algorithmic process for constructi:j
j + 2-bits-in, j-bits-out faithful bipartite recipro
tables whose total size grows only as 23i+0(1), We
present extensive statistics on the exhaustively evalu-
ated bipartite reciprocal tables in comparison to con-
ventional reciprocal tables for the now feasible out-
put sizes 10 < j < 16. In particular these bipartite
tables are confirmed to be faithful, are shown to be
some 4 to 16 times smaller than conventional tables,
and demonstrate that over 90% of all input obtains a
round-to-nearest output value.

kel TABLE P
A2)
A [(x.1x_]| 2+l bits-in, Gk-1)+2
*n' *m .
bits-out .
4 k+1 k
% « *m : X
—k+l4—>—k ek t—
1kl 1x
TABLE N
= Y B byt bitsin,
[xh | x) 1| &-1+2
bits-out.

Figure 1: A j+2=3k+1 bits-in j=3k-1 bits out Faithful Bipartite Reciprocal table

18

Our approach here is both to provide foundations
for the methodology and to exhibit reduction to prac-
tice. Thus selected reciprocal and bipartite reciprocal
tables are included in an appendix. We believe the
simplicity of structure of bipartite reciprocal tables
and the efficiency of lookup (particularly in combina-
tion with multiplier recoding) augers well for their in-
clusion in the next generation of faster multiplicative
based division designs.

2 Faithful Reciprocal Tables

A faithful reciprocal table denotes an i-bits-in, j-
bits-out reciprocal table such that for any input argu-
ment 1 < z < 2, the output differs from % by less than
1 ulp. For such tables we allow the value unity as a
table output value as well as the 2/ values of the form
0.15165...b;. Note that for any j-bits-in, j-bits-out re-
ciprocal table with j > 3, the second smallest input

. 2741) (2742 . :
interval [ﬁ_;._l, L;,-'—l) has an interval of reciprocal
(29t -3)

values extending from less than ‘5

than @."_21

=T So the table must have a maximum
ulp error strictly greater than one ulp.

Observation 1: Any i-bits-in, j-bits-out recipro-
cal table for 7 < j with j > 3 has a maximum error in
ulps strictly greater than one ulp and therefore is not
faithful. a

Thus our search for faithful reciprocal tables must
be limited to j + g-bits-in, j-bits-out reciprocal tables
where g > 1 is termed the number of input guard bits.
We are particularly interested in the reciprocal tables
generated by the following midpoint reciprocal round-
to-nearest procedure [DM 94, Fe 67, FS 89): which we
herein term the midpoint reciprocal algorithm.

to greater

Algorithm 1 [Midpoint Reciprocal Algorithm]
Stimulus: Integers i > 1and j > 1

Response: An i-bits-in j-bits-out reciprocal table

Method: for n = 2° to 2'+! — 1 step 1

<for each input interval [, 2£1)>

begin
ij+1
L1: table(n) := RN(2";§)
<rounding is to the nearest integer in ulps>
end

In [DM 94] we proved the midpoint reciprocal algo-
rithm always generates an optimal (1,j) reciprocal ta-
ble, that is, the maximum relative error for each entry
in the table is the minimum possible for that entry.
Herein an optimal (%, j) reciprocal table is synonomous
with the output of the midpoint reciprocal algorithm.
We note another significant property (proved in [DM
95]) pertaining to optimal (j + g, j) reciprocal tables.

Theorem 1: Forj > 1, ¢ > 0, an optimal (j+g, J)
reciprocal table is faithful for any g > 1, and in general
has a maximum error for any output strictly less than
3 +279 ulps for any g > 0. n)

19

Corollary: The minimum size of any faithful re-
ciprocal table is 2/*1; bits, as occurs for the optimal
(7 + 1, 7) reciprocal table. a]

Appendix Table A-1 provides considerable informa-
tion relevant to the optimal 5-bits-in, 4-bits-out re-
ciprocal table that generalizes to observations about
(7 + g,7) optimal tables. For each input interval in
Table A-1 the output error interval is given in ulps,
confirming that the (5,4) optimal table is faithful
with maximum error 0.970 ulps occuring for input ap-
proaching 22 in input interval [%,%) This conforms
with the upper bound of 1.00 ulp from Theorem 1.

Maximizing the portion of input rounded to nearest
is a useful “tiebreaking” refinement of faithfulness. We
herein cite selected results referring the reader to [DM
95] for details and proofs. A maz RN reciprocal table
is an ¢-bits-in, j-bits-out reciprocal table for which the
portion of input values 1 < z < 2 obtaining round-to-
nearest output is as large as possible over all i-bits-in,
Jj-bits-out reciprocal tables.

Theorem 2: For any ¢ > 1,7 > 1, an optimal
(j + g,7) reciprocal table is a max RN table, where
the portion not rounded-to-nearest is at most %r. O

Observation 2: To the extent that the non zero
round-to-nearest percentages of the max RN table in-
put intervals are uniformly distributed between 0 and
50%, the portion of the input 1 < z < 2 not rounded
to nearest for a max RN (j + g, j) reciprocal table
should be 4. a

We now investigate bipartite reciprocal tables, with
the minimum size and maximum round-to-nearest per-
centages of faithful (j 4 g,) conventional reciprocal
tables providing the standards against which to mea-
sure the size reduction achieved and overall accuracy
sacrificed by compression.

3 Bipartite Reciprocal Tables

An i-bits-in, j-bits-out bipartite reciprocal table is
termed optimal if it provides identical results to that
given by an i-bits-in, j-bits-out optimal ROM recip-
rocal table. The ratio of the size of the optimal ROM
reciprocal table to the size of the optimal bipartite re-
ciprocal table will be termed the compression factor
for the optimal bipartite reciprocal table. Note that
although the size of the bipartite reciprocal table is
not fixed by the numbers of input and output bits,
the size of the optimal ROM reciprocal table is always
2¢5 bits, so that the compression factor is simply de-
termined from the parameters giving the component
table sizes of the bipartite reciprocal table.

We require that the output of our bipartite recipro-
cal tables be faithful, that is, guaranteed accurate to a
unit in the last place, achieving what many take to be
a virtual standard for floating point function accuracy
[AC 86, FB 91]. The smallest faithful ROM reciprocal
tables as shown in Section 2 are the optimal (5 + 1)-
bits-in, j-bits-out tables of size 27+!; bits. We have
constructed optimal (hence also faithful) Sj + 1)-bits-
in, j-bits-out bipartite reciprocal tables of about half
the optimal reciprocal table size for the small but non
trivial values j = 5,6,7 [DM 95].

Output Bits Input bit Positive Part Negative Part | Total Table | Compression
J Partition of j 4+ 1 | Table Dimension | Table Dimension | Size in Bytes Factor
5 2,2,2 4 in,7 out 4 in,4 out 2 1.82
6 - 3,22 5 in,8 out 5 in,4 out 48 2.00
7 3,3,2 6 in,9 out 5 in,4 out 88 2.55

Table 1: Input bit partition, positive and negative part table dimensions,table sizes,
and compression factors for some optimal bipartite reciprocal tables

Table 1 tabulates the input bit partition, positive
and negative part table dimensions, size and compres-

:Eﬁ factor for each of these known bipartite reciprocal
es.

Table A-2 of the appendix shows the positive and
negative parts of a 6-bits-in, 5-bits-out optimal bipar-
tite reciprocal table. Consider a 6 bit input operand
1.b5byebababibg. The input operand is partitioned into
three parts, each having two bits, namely z, = bgb,
called the high-order part, z, = b3ds called the
rmddle-orde_r art, and z; = byby called the low-order
part. The high order part in conjunction with the mid-
dle order part [zhlz,’,l.J index to a 4 bits-in, 7 bits-out
positive part table (Table P) and the high order part
in conjunction with the low order part zj|z;] index
to a 4 bite-in, 4 bits-out negative part table (Table
Nl). Given any 6 bit input operand, the P and N Ta-
bles are looked up for the positive and negative parts
of the redundant binary reciprocal given in borrow-
save form. Two guard bits in each of the P and N
outputs are rounded off during fusion (in the recoder)
with the result that the output is identical to the op-
timal ROM reciprocal table output. For convenience
of illustration, the outputs of the P and N Tables are
each shown with 10 bits, a leading bit before the radix
point followed by 9 bits beyond tﬁe radix point. How-
ever only 7 bits and 4 bits respectively need to be
stored in the P and N tables. Observe for the Table P
positive part shown, the leading bits denote that the
reciprocal must lie between 1 and 1, and the trailing
bit shown is added implicitly when P and N values
are fused and is not a part of the bits stored in Table
P. Similarly for the Table N negative part, the first 4
zero bits beyond the radix point and the trailing 0 bit
are shown only for visualizing a.liixnment in fusing the
table N value with the correspondi g table P value.

It is useful to provide a verification walkthrough to
further illustrate the workings of a bipartite recipro-
cal table. This is provided for the 6-bits-in, 5-bits-out
optimal bipartite table shown in Table A-2 by the ex-
pansion given in Table A-3. For each 6 bit input, the
corresponding infinite precision middle point recipro-
cal and the optimal reciprocal (rounded middle point
reciprocal) are provided. To achieve o timality the P
and N table entries are constructed such that the com-
gt;ted reciprocal output for any 6 bit input obtained

m the corresponding P and N values is not only
close but on the same side of the output value mid

20

point in ulps as the corresponding infinite precision
middle point reciprocal. Observe that the full (6,5)
bit table can be divided into 4 blocks, the number of
blocks determined by the number of bits in the high
order part of the input, and each block can be divided
into 4 segments, the number of segments determined
by the number of bits in the middle order part of the
input. Each segment has 4 entries, determined by the
number of low order bits in the input. Notice that
for each segment there is one Table P entry since the
leading 4 bits of the 6 bit input in the segment are the
same. Also there are four different Table N entries in
each segment corresponding to the four inputs in the
segment having different low order bits. Observe that
in each block, the same set of four Table N entries oc-
cur in each of the four segments. Given a 6 bit input
operand, the two high order bits in conjunction with
the two middle order bits identify the block and the
segment it belongs to, and the corresponding Table P
entry is read. Two trailing bits of the input determine
the appropriate Table N entry in the segment.

Consider for example line seven of Table A-3. Line
seven corresponds to the input 1.000110 shown in Ta-
ble A-3 as 70 ulps where an ulp here is é. This in-
put is the third entry of the second segment in the
first block. The corresponding Table P is indexed by
1.0001xx and the output is siown in Table A-3 line
five to be 59.875 ulps. Table N is indexed by 1.00xx10
and the output is shown in Table A-3 line seven as
1.75 ulps. The computed value of the reciprocal is
obtained as &59.875—1.75) = 58.125 ulps and then fi-
nally rounded to nearest to yield 58 ulps as the 5 bit
reciprocal of the 6 bit input I3. Observe from Table
A-3 that for any input trjument the rounded com-
puted reciprocal is identical to the rounded midpoint
reciprocal from the conventional 64 entry table. Thus
this 6-bit-in, 5-bits-out bipartite reciprocal table with
(4,7) and (4,4) tables for positive and negative parts
is optimal (hence faithful).

Tables A-3 incorporates the simplification that the
positive and negative parts need not be subjected to a
carry completion addition, but rather can go directly
to a multiplier (Booth) recoder accepting borrow-save
form with the recoding including the rounding [LM
95, TY 87). This is significant since we essentiall
obtain compression paying very little penalty in hard}-'
ware complexity or cycle time when the reciprocal is
to be employed as a multiplier, as in the fast division
algorithms previously cited.

In general for higher values of j it is not possible to

construct (j + 1)-bits-in, j-bits-out optimal bipartite
reciprocal tables where the index size of both tables is
only about % J. For larger values of j where a greater
compression factor is sought we shall shift our focus
to construction of bipartite reciprocal tables that are
still guaranteed correct to a unit in the last place even
though they might not match identically the optimal
(4 + 1, 5) reciprocal tables.

Note that if an input interval of arguments
% L"T",'H) is such that the interval of reciprocals falls
strictly between the two output values of m ulps and
m+1 ulps, then either choice is an acceptable faithful
reciprocal. The optimal choice is always the unique
one that maximizes the portion of the interval that
rounds to nearest, even though the split may be near
half and half. When generating a bipartite reciprocal
table accurate to a unit in the last place, the extent to
which it differs from the corresponding optimal ROM
reciprocal table may be usefully measured by compar-
ing either or both the maximum ulp error of each table
and the portions of input that realize round-to-nearest
lookup in each table. These comparative metrics will
be emphasized in the balance of this paper.

An i-bits-in, j-bits-out bipartite reciprocal table is
termed faithful when the i bit input corrresponding to
any input argument 1 < z < 2 provides a j bit output
that differs by less than one ulp from the infinitely
precise value % The compression factor for any faith-

ful bipartite reciprocal table is given by 2i+!; divided
by the size of the i-bits-in, j-bits-out faithful bipartite
reciprocal table. Note that this latter compression fac-
tor is not for exclusively lossless compression, but is
particular for compression preserving the 1 ulp bound.
Observe also that the compression factor is defined in
comparison to the size of the (j + 1)-bits-in, j-bits-out
optimal reciprocal table which was shown in Section 2
to be the smallest ROM reciprocal table satisfying the
1 ulp bound. It is important to note that the notion of
faithful compression allows for greater possibilities in
reducing table size than would pertain to the require-
ment of lossless compression. We have constructed
faithful bipartite reciprocal tables for the practically
useful sizes 9-bits-in, 8-bits-out and 10-bits-in, 9-bits-
out which both attain compression factors of better
than 4 to 1. Table 2 tabulates their input bit parti-
tion, positive and negative part table dimension, size
and compression factor for faithful compression. The
9-bits-in, 8-bits-out table is Appendix Table A-4.
Table A-4 may be exhaustively developed to verify
faithfulness in a manner comparable to the enumer-
ation in Table A-3 . It is instructive to consider a

typical line of such an enumeration where the faith-
ful bipartite table differs from the optimal reciprocal

table, as for example for the input 1.000100001 = 343

shown in Table A-5. Note that in Table A-5 the suc-

512
cessive low end reciprocals Lo'?}s— and S%JilT” indicate

that any point in the input interval having input index
1.000100001 may have its reciprocal represented with
less than one ulp error by either £33 or 281 The op-

. . . 481 . 3—15 or m.
timal table choice is g73 with maximum ulp error for

this interval of 0.883 ulp where 56.5% of input values
from this interval will obtain a round-to-nearest table
lookup reciprocal value. Alternately our faithful bi-
partite table choice is 222 with maximum ulp error for
this interval of 0.998 ulp where the other complimen-
tary 43.5% of the input values from this input interval
WiP obtain a round-to-nearest table lookup reciprocal
value.

During the exhaustive enumeration these statistics
can be accumulated, here leading to the following re-
sults. Both faithful bipartite and conventional opti-
mal tables realize the same worst case ulp difference
of 0.99805 realized for the input 1.0000000001. The
more useful metric here is that the faithful bipartite
table realizes round-to-nearest output for some 82%
of all input over 1 < z < 2, as compared to some 88%
for the optimal reciprocal table. It can be argued that
the bipartite table’s slightly poorer average case per-
formance with equal worst case rounding error in ulps
is an acceptable price to pay for a more than 4 to 1
compression in table size.

A perhaps more telling comparison is found be-
tween the enhanced accuracy documented in the 120
byte 9-bits-in,8-bits-out faithful bipartite reciprocal
table in comparison to the nearly equivalent size
128 byte 7-bits-in,8-bits-out optimal reciprocal table.
While the latter achieves a maximum relative error
bound of 7.775 bits [DM 94], it provides a faithful 8
bit result for only 85.82% of all input compared to
100% for the bipartite table, and it provides a round-
to-nearest result for only 52.33% of all input compared
to some 82% for the faithful bipartite table.

The (j + 1, 7) faithful bipartite reciprocal tables we
constructed relied on avoiding compounded worst case
features which was tractable for less than 10 output
bits. The construction of further such (j + 1)-bits-
in, j-bits-out faithful bipartite reciprocal tables with
near % Jj table index sizes becomes unmanageable and
in certain cases impossible for j > 10. For faithful
bipartite tables of 10 or more output bits we proceed
instead to the algorithmic generation of (j+2)-bits-in,
Jj-bits-out faithful bipartite tables.

Output Bits Input bit Positive Part Negative Part Total Table | Compression
J Partition of j + 1 | Table Dimension | Table Dimension | Size in Bytes Factor
8 3,3,3 6 in,10 out 6 in,5 out 120 4.27
9 4,33 7 in,11 out 7 in,5 out 256 4.50

Table 2: Parameters for certain faithful bipartite reciprocal tables

21

4 Algorithmic Construction of Faithful
Bipartite Reciprocal Tables

In this section we present a general algorithm for
constructing j + 2-bits-in, j-bits-out faithful bipartite
reciprocal tables. The parameterization of the posi-
tive and negative part tables separates into three cases
based on the value of j modulo 3. It is convenient to
introduce the parameter k = [1] and view the cases
cyclicly for the three values j = 3k — 2, 3k — 1, 3.

‘The reasons for the parameterization will become
evident from thztproof of the one ulp table bound per-
t to each of these cases. Suffice it to notice here
that the positive part tables increase in size with j
periodically by factors of approximately 2, 2, and 1,
while the negative part tables remain the same size for
three consecutive values of j and then jump by a fac-
tor somewhat over four. The combined effect is that
asymptotically in j the total table size grows period-
ically by factors § = 1.60, 7 = 1.75, and 12 = 1.43
for a rate asymptotically averaging 2% = 1.587. Thus
generating 3 more bits with 1 uﬁl)n accuracy is obtained
at a cost of a factor 4 growth in bipartite reciprocal
table size as compared to the larger factor 8 growth in
size of a conventional optimal reciprocal table. Figure
1 showed the input bit partitions, indexing schemes,
and dimensions of P and N tables to construct a 3k+1-
bits-in, 3k — 1-bits-out bipartite reciprocal table.

To motivate our method for constructing the Ta-
ble P positive part and Table N negative part of a
bipartite ROM reciprocal table, we inspect selected
portions of the 10-bits-in, 8-bits-out low and middle
point reciprocal table shown in Table A-6. For our bi-
partite table the 10 input bits are split into 4, 3, and
3 bits as per the parameterization corresponding to k
= [§] =3 and j = 8 = 3x3-1=3k — 1 in Table 3.
The leading 7 bits index to the desired Table P, and
the high order 4 bits in conjunction with low order 3
bits index into Table N. To reflect this structure the
full 10 bits in, 8 bits out reciprocal table will be par-
titioned into 2*+! = 16 blocks, each block containing
2% = 8 segments, and each segment containing 2* = 8
entries. In Table A-6, selected inputs relevant to con-
structions for the first block are shown, including all 8
entries in the first and last segment and the first and
last entries of each of the 6 other segments. For each of
the 10 bit inputs shown, the end point reciprocal and
middle point reciprocal are each given to three dec-
imal fraction digits of ulps, implicitly indicating the
analytic infinitely precise values for this part of the

computation. Notice that for each segment in Ta-
ble A-6 we need to determine one Table P entry, and
for each block set eight Table N entries which are re-
peated for each of the segments in the block. Clearly
for any method of computing the Table P and Table N
entries, the construction of these entries for different
blocks are independent of each other since the high
order four input bits are different for each block. It
is representative to show the computation of P and N
entries in the first block.

We will first show analytically how to compute the
infinite precision values providing the basis for the P
and N entries. From hereon the middle point recip-
rocal, and the P and N table entries are considered
to be infinite precision values unless mentioned other-
wise. Selected middle point reciprocals of the (10,8)
reciprocal table are used to construct the bipartite re-
ciprocal table. The entries in the bipartite table are
selected such that the computed reciprocal of each in-
put (the difference of presumed infinitely precise P
and N entries) differs by no more than % ulp from the
corresponding middle point reciprocal, such resulting
differences being enumerated for reference in Table A-
6. Observe further from Table A-6 that each middle
point reciprocal differs from each of the corresponding
interval end point reciprocals by at most § ulps, this
amount decreasing monotonically down the table from
the initial value 0.250 ulps to 0.222 ulps at the end of
the first block. This yields that the middle point re-
ciprocal in the table differs from any input argument
reciprocal 1 by at most 4 ulp, so that the computed
reciprocal as determined from the P and N entries il-
lustrated in Table A-6 differs from 1 by at most +1
2 ulps. This guarantee of at most § ulp error in the
analytic computed reciprocal is instrumental in insur-
ing that the subsequent compound roundings produc-
ing the P and N table values and output look up value
achieve a total error bound strictly less than 1 ulp.

We define the spread of a segment to be the differ-
ence between the middle point reciprocals of the first
and last inputs in the segment. For the first segment
in Table A-6 the spread 1s 511.750 - 508.277 = 3.473
ulps, and the spreads of the next seven segments are
3.419 ulps, 3.367 ulps, 3.316 ulps, 3.266 ulps, 3.217
ulps, 3.170 ulps, and 3.123 ulps. Figure 2 shows the
reciprocal curve for a block partitioned into the four
segments. Notice that the slope of the curve decreases
monotonically from the lower segments to the higher
segments. The reciprocal curves for the different seg-
ments are then overlayed to show the relative differ-
ence of the slopes and the spreads of the segments.

Output Bits Input Bit Positive Part Negative Part Total Table
j Partition of j 42 | Table Dimension Table Dimension | Size in Bits
k-2 k+1,k-1,k 2k in,3k out 2k +1ink+1 out | 2%%(5k +2)
3k—1 k+1,kk 2k+1in3k+1out [2k+1ink+1out | 2°%(8k +4)
3k k+1,k+1,k | 2k+2in3k+2out [2k + 1 in,k + 1 out | 2%*(14k + 10)

Table 3: Parameterization for the faithful bipartite reciprocal
tables to be constructed by our general algorithm

22

Segments

Overlay segments : i

Shift high and low overlay
to balance

—_—r W

Table N values

Figure 2: Algorithmic generation of table P and N entries of a bipartite table

To obtain a tight fit of the curve resulting from the
Table P and N values, the spreads and the slopes of
the first segment and the last segment of a block are
then averaged to generate the dotted curve shown in
the figure. The low (first segment) and the high (last
segment) overlays of the block are shifted down and
up respectively by an amount b such that the spread
of the dotted curve is the average of the spreads of the
first and the last segments. The other overlays (not
shown in the figure for clarity) are shifted accordingly.
Thus the first entry of each segment is adjusted ac-
cordingly to compute the Table P entries to cover the
spread. Note that in Table A-6, the computed spread
is 3.298 ulps which is the average of the spreads of
the first and last segments. Also note that the middle
point reciprocal of the first entry of the first segment
is pushed down by &;3'1"@ ulps i.e. 0.175 ulps to

obtain the Table P entry of the first segment. Simi-
larly the middle point reciprocal of the first entry of
the last segment is pushed up by 0.175 ulp to obtain
the Table P entry of the last segment. To compute the
remaining Table P entries as given in Algorithm 3, we
note that corresponding middle point reciprocals need
to be adjusted by 0.087 ulps, 0.061 ulps, 0.035 ulps,
0.009 ulps, 0.016 ulps, 0.040 ulps, 0.064 ulps, and 0.087

ulps and the Table P entries of the eight segments are
computed as 311:663 507.724 503.846 ~ 500.037 496.266

2 » § ’) ’ ’
492.561 488.911 and 485.3%25 512 812 s12
512 512 512 -

Also the value of the dotted curve in Figure 2 at
each point is the average of the slopes of the high and
low overlays at that point. The value of the dotted
curve at each point is used to compute the Table N
entries of the block. Thus the successive differences of
the entries of the first and last segments of the first
block shown in Table A-6 are averaged to compute
the Table N entries. This centers the errors across
each segment and the errors of the segments across
each block. The first Table N entry of each segment is
zero. For i > 1, the i** Table N entry of the block is
computed as the average difference between the mid-
dle point reciprocals of the first input and the #** in-
put of the first and the last segments. In Table A-6
for the first block, the first Table N entry is 0, the
second Table N entry js (511:75=511.25)+(485.227—484.779)

. 2
ulps which equals 0.474 ulps, the third Table N entry
js (B11.75-510.753)4(485.227-484.331) ulps which equals

2
0.974 ulps, and likewise the remaining five Table N
entries are 1.419 ulps, 1.890 ulps, 2.360 ulps, 2.830
ulps, and 3.298 ulps.

23

With these eight Table P entries, and eight Table
N entries, the reciprocals of the first sixty-four 10 bit
inputs are computed and shown in the sixth column
of Table A-6. The last column of Table A-6 shows the
signed differences in ulps between the computed recip-
rocals and the corresponding middle point reciprocals
of each 10 bit input in the first block. Notice that
these differences in each segment are symmetric and
centered around zero, and their magnitudes are maxi-
mum for the first and last entries of the segment. Also
note that the maximum difference in each block is well
centered around zero and is realized in the first and
last segments of the block. It is important however
to note that these Table P and Table N values shown
in Table A-6 are infinite precision values and are each
subjected to rounding before being stored in the bi-
partite table. Table P entries are rounded down to 10
bits, the two trailing bits being the guard bits. The
Table N entry is rounded to nearest to 4 bits. Notice
that the value of a spread of any segment in Table A-6
is strictly less than 4 ulps, so only 2 bits are needed to
the left of the radix point in ulps to cover any spread,
and so only 4 bits need to be stored in Table N, the
two trailing bits being the guard bits.

For the first block of the (10,8) bipartite table in Ta-
ble A-6 the table P entries are obtained by rounding
the infinitely precise values down to the closest quar-
ter and adding %, effectively rounding to the nearest
odd eighth. The resulting values with the included
are then 511.625, 507.625, 503.875, 500.125, 496.375,
492.625, 488.875, and 485.375. The table N entries are
obtained by rounding to the nearest quarter yielding
0, 0.50, 1.00, 1.50, 2.00, 2.25, 2.75, and 3.25. Note that
since the computed prerounded reciprocal obtained by
fusing the P and N parts will have an odd number of
eighth’s of ulps, the final rounding adds at most g
ulp additional error. The compounded worst case ad-
ditional error due to these discretizing roundings is
then g ulps. In Table A-6, the rounded P and N ta-

ble values for the input {327 in line four are 2150

1024
and 2. which constitute the positive part and the

negative part of the redundant reciprocal in borrow-
save form. The final non-redundant 8 bit reciprocal

of the 10 bit input %—E is computed by fusing the
positi\'re part (511})‘26425) with the negative }.)a.rt. 1—})'—253 a.{1d
rounding to nearest to the nearest ulp yielding 8 bits
which yields £% matching the optimal reciprocal for
this input operand. For any 10 bit input operand in

1024

the (10,8) bipartite table, the computed reciprocal is
guaranteed to be faithful.

We now describe the algorithm formally to com-
pute the P and N tables %or the positive and neg-
ative parts of the bipartite ROM table to generate
3k —1+ u bit faithful reciprocals of 3k + 1+ u bit input
operands for u = 0, 1, and -1. The 3k+ 1+ u bit input
operand 1.b3i4ubsiqu—1...b3babiby is partitioned into
three parts, z5 = b3k +ub3k—14y---b2k 4y is the k+1 bit
high order part, z,,, = b2k +u—1b2k4u—2...0; is the k+u
bit middle order part, and z; = bx_1b;_j...bo is the k
bit low order part. The three parts, zj, 2, and z;
can be conveniently represented by a radix k+1 digit,
a radix k + u digit, and a radix k digit respectively.
Thus any input operand z is encoded as [z4|zm|zi]
whose value is 1 + 2-(k+Vg, 4 2-(+u)g 4 90—k
and clearly an input operand [I|m|n] is the n — 1*» en-
try of the m — 1*» segment in the I — 1t» block of the
fkb-{- 1+ u-bits-in, 3k — 1 + u-bits-out ROM reciprocal
able.

The high order part in conjunction with the middle
order part, {z4|zm] index to a 2k + 1+ u bits-in, 3k +
1+ u bits-out table called Table P and the high order
part in conjunction with the low order part, [z;.lzﬂ
index to a 2k + 1 bits-in, k + 1 bits-out table calle
Table N. We define recipm;a([zn|zm|zi]) as the infinite

precision middle point reciprocal of the 3k + 1 + u bit
Input z.

Algorithm 2 [Bipartite Reciprocal Table Con-
struction

Stimulus: Integers k£ > 2, and u = 0,1, -1
Response: 2k + 1+ u-bits-in 3k + 1+ u-bits-out table

P, and 2k + 1-bits-in k + 1-bits-out table N
Method:
Step 1 [Construction of Table P]

for z), = 0 to 2¥+1 — 1 step 1

for z, = 0 to 2544 — 1 step 1

<for each segment in each block>

begin

L1: firstspread(z;)

recipmia([zs|0[2% — 1])

recipmid([zr]0]0])

L2: lastspread(zs) = recipmiqa([z4|25+* —1/0])) -
recip,,..-,;([z;.|2"+“ - 1l2k - 1])
L3: averagespread(zy) =
(firstspread(za)+lastspread(zy))
3
L4: spread(zn,zm) = recipmid([zalzm|0]) —

recipmid([zh|zm[2F — 1]2
<compute the spread of the segment>
adjust(zs, zm)

averagespread(za)—spread(zy Zm)

LS5:

2
<compute the adjustment>

P(zs, a:mz
recipmid([zh|2m|0]) + adjust(zh, zm)

Lé6:

24

L7: Round down P(zx,z.,) to 3k + 1 + u bits
end

Step 2 [Construction of Table N]

for z, = 0to 2¥*1 — 1 step 1

for z; = 0 to 2F — 1 step 1

<for each block construct 2¥ Table N entries>

begin

L8: firstdiff(zp, ;)
recipmid([£4]0]0]) — recipmia([zn0]z1])

L9: lastdiﬁ'(z;., z;) = recip,,..-d([z;.|2"+" - 1|0]) -
recipmia([za|25 T — 1]z1))

L10: N(z;.,z;) = firstdiff(zs,z:);-lactdi“(z. z)

L11: Round to nearest N(zp,z;) to k + 1 bits
end

Theorem 3: For any j > 6, Algorithm 2 generates a
faithful (j 4+ 2,7) bipartite reciprocal table.

Proof: (see DM 95]) m]

We apply Algorithm 2 to construct j + 2-bits-in,
Jj-bits-out bipartite reciprocal tables for 10 < j < 16.
Table 4 shows the ROM table size in Kbytes = 213
bits, percentage of inputs not RN, and maximum ab-
solute error (in ulps) of our (j + 2, j) bipartite tables
and that of (j + 1, j), and (j + 2, 7) optimal tables for
10 < j < 16. Observe that the (5 + 1, j) optimal table
is the minimum sized table to guarantee faithful recip-
rocals. So the (j+2, j) biparite table size is compared
to the (j+1, 7) optimal table size to obtain the proper
measure of faithful compression. Table 4 shows that
while the compression factor ranges from about four
to sixteen, the (j+2, j) biparite table consistently out-
performs the (7 + 1, 5) optimal table in percentage of
inputs round-to-nearest, and maximum absolute error
incurred. The percentage of inputs round-to-nearest
in the (j + 2, 7) biparite table is about 91.5% com-
pared to about 87.5% in the (j + 1, j) optimal table.
This suggests that even though a (5 + 2, j) bipartite
table is not guaranteed optimal, the percentage of the
input arguments for which the output of the bipartite
table is the round to nearest value is nearly as high as
possible as given by the optimal (j +2, j) table. Table
4 also shows that while the maximum absolute error
gin ulps) incurred by the (j+ 2, j) biparite table grows
rom 0.826 ulps to 0.919 ulps approaching the upper
bound of 1 ulp for large j, it is still better than the
worst absolute error suffered in the (j + 1, j) optimal
table which is very close to 1 ulp for any j, realized at
the very first entry of the table.

For iterative refinement division methods such as
Newton Raphson or convergence division, reducing the
maximum relative error in the initial approximation
to the reciprocal can be a bigger concern than the 1
ulp accuracy guaranteed after the final rounding. For
those applications, we can measure the maximum rel-
ative error in a biparite table using the prerounded
borrow-save value and compare it with that of the op-
timal table where the maximum relative error is known
to be minimized. The precision in bits of a table is the
negative base two logarithm of the maximum relative

J j + 1-bits-in,j-bits-out j + 2-bits-in,j-bits- out | 7 + 2-bits-in,j-bits-out
Optimal ROM table Optimal ROM table | Bipartite table

Table Percent | Max Table Percent | Max Table Percent | Max
size not RN | error size not RN | error size not RN | error
(Kbytes) (ulps) | (Kbytes) (ulps) | (Kbytes) (ulps)
10 2.5 12.453 | 0.999 5 6.259 | 0.722 | 0.6875 8.628 | 0.826
11 5.5 12.710 ~1 11 6.126 0.736 1.125 8.514 0.857
12 12 12.694 =1 24 6.103 0.743 2.0625 8.438 0.853
13 26 12511 | =1 52 6.217 | 0.746 3.375 8.638 | 0.863
14 56 12501 | ~1 112 6.248 | 0.748 5.5 8.616 | 0.901
15 120 12455 | =~ 1 240 6.228 | 0.747 10 8.578 | 0.904
16 256 12522 | =1 512 6.259 | 0.748 16 8.677 | 0.919

Table 4: Table sizes, percent not RN, and maximum absolute error in ulps of
optimal tables and bipartite tables of different sizes

error realized in the table. A table precision of o bits
(with o not necessarily an integer) then denotes that
the approximation of ;1; by the table value yields a rel-
ative error of at most 2% The precision of the j+2 bit
unrounded borrow-save values of the (j + 2, 7) bipar-
tite table, and the precisions of optimal (j + 2, j + 2)
and optimal (j + 1,j + 2) tables for j = 10,12,14,16
are shown in Table 5. Observe that the minimum pre-
cision of the j + 2 bit unrounded borrow-save values
of (7 +2, j; bipartite table and that of the optimal
(741, j+2) table are about the same, with the preci-
sion of the optimal (j+ 2,5+ 2? table larger by about
0.7 bits. So the bipartite table compares most rea-
sonably with the optimal (j + 1, j + 2) table in terms
of precision, for which the slightly larger compression

factors ranging from 4 to 18 as j goes from 10 to 16
are obtained.

J 10 12 14 16
(7+2,7+2) |12.428 | 14.423 | 16.418 | 18.417
optimal table
(7+1,74+2) | 11.701 | 13.687 | 15.683 | 17.680
optimal table

J +2bit 11.744 | 13.678 | 15.678 17.634
unrounded
Table 5: Precision (in bits) of optimal tables

and unrounded borrow-save values of
bipartite table values of different sizes
References

[AC 86] R. C. Agarwal, J. W. Cooley et al, “New
Scaler and Vector Elementary Functions for
the IBM/370”, in IBM J. Res. and Develop.
, Vol. 30, No. 2, 1986, pp 126-144.

[BM 93] W. B. Briggs and D. W. Matula, “A 17x69
Bit Multiply and Add Unit with Redundant
Binary Feedback and Single Cycle Latency”
in Proc. 11** IEEE Symp. Comput. Arith-
metic , 1993, pp 163-170.

[DM 94] D. Das Sarma and D. W. Matula, “Measur-
ing the Accuracy of ROM Reciprocal Tables”
in IEEE Trans. Comput., Vol. 43, No. 8, 1994,

25

pp 932-940.

[DM 95] D. Das Sarma and D. W. Matula, “Faith-
ful Bipartite ROM Reciprocal Tables”, Tech-
nical Report, Computer Science Department,
Southern Methodist University, May 1995.
M.D. Ercegovac, T. Lang and P. Montuschi,
“Very High Radix Division with Selection by
Rounding and Prescaling”, in JEEE Trans.
Comput. , Vol. 43, No. 8, 1994, pp 909-918.
P. M. Farmwald, “On the Design of High Per-
formance Digital Arithmetic Units,” in Ph. D.
thesis, Stanford University, 1981.

[FB 91] W. E. Ferguson and T. Brightman, “Accurate
and Monotone Approximations of Some Tran-
scendental Functions”, in Proc. 10** IEEE
Symp. Comput. Arithmetic, 1991, pp 237-244.

[EL 94]

[Fa 81]

[Fe 67] D. Ferrari, “A Division Method Using a Par-
allel Multiplier”, in IEEE Trans. Electron.
Comput. |, 1967, EC-16, pp 224-226.

D. L. Fowler and J. E. Smith, “An Accu-

rate High Speed Implementation of Division

by Reciprocal Approximation”, in Proc. 9*"

IEEE Symp. Computl. Arithmetic, 1989, pp

60-67.

[LM 95] A. Lyu and D. W. Matula, “Efficient Multi-
plier Recoding of Redundant Binary Values”,
in Proc. 12'* IEEE Symp. Comput. Arith-
metic, 1995.

[Na 87] H. Nakano, “Method And Apparatus For Di-
vision Using Interpolation Approximation”,
in United States Patent, No. 4,707,798, 1987.

[TY 87] N. Tagaki and S. Yajima, “On a Fast Itera-
tive Multiplication Method by Recoding In-
termediate Product,” in Proc. 36** National
Convention of Information Science, Kyoto
University, Aug. 1987.

[WF 91] D. C. Wong and M. J. Flynn, “Fast Division
Using Accurate Quotient Approximations to
Reduce the Number of Iterations”, in Proc.
10t* IEEE Symp. Comput. Arithmetic, 1991,
pp 191-201.

[FS 89]

Appendix

Chopped

Input

Middle point | Rounded Output Error Interval | Percentage
Input Interval Reciprocal | Reciprocal Interval in ulps Not RN

x(1/32) x(1/32)
1.00000 | [32/32,33/32) | 3L.508 32 (31.030,32.000] | (-0.970,0.000] | 49.21
1.00001 [33/32,34/32) 30.567 31 (30.118,31.030] | (-0.882,0.030] 42.62
1.00010 | (34/32,35/32) 29.681 30 (29.257,30.118] | (-0.743,0.118] 28.81
1.00011 |[35/32,36/32) | 28.845 29 (28.444,29.257) | (-0.536,0.257] | 7.02
1.00100 | [36/32,37/32)| 28.055 28 (27.676,28.444] | (-0.324,0.444] | 0.00
1.00101 | (37/32,38/32)| 27.307 27 (26.947,27.676] | (-0.053,0.676] | 23.64
1.00110 | [38/32,39/32) | 26.597 27 | (26.256,26.947] | (-0.744,0.053] | 35.85
1.00111 | [39/32,40/32) | 25.924 26 (25.600,26.256] | (-0.400,0.256] | 0.00
1.01000 | (40/32,41/32) | 25.284 25 (24.976,25.600] | (-0.024,0.600) | 15.69
1.01001 | [41/3242/32) | 24.675 25 (24.381,24.976] | (-0.619,-0.024) | 20.41
1.01010 | [42/32,43/32) | 24.094 24 (23.814,24.381] | (-0.186,0.381] | 0.00
101011 |(43/3244/32)| 23.540 24 (23.273,23.814] | (-0.727,-0.186) | 42.55
1.01100 | [44/32,45/32) 23.011 23 (22.756,23.273] | (-0.244,0.273) 0.00
1.01101 | [45/32,46/32) | 22.505 23 [(22.261,22.756] | (-0.739,-0.244] | 48.89
1.01110 | (46/3247/32) | 22.022 22 | (21.787,22.261] | (-0.213,0.261] | 0.00
L0111 | [47/32,48/32) | 21.558 22 (21.333,21.787] | (-0.667,-0.213) | 37.21
1.10000 | [48/32,49/32) | 21.113 21 (20.898,21.333] | (-0.102,0.333) | 0.0
1.10001 | {49/32,50/32)| 20.687 21 (20.480,20.898] | (-0.520,-0.102] | 4.8
1.10010 | [50/32,51/32) | 20.277 20 (20.078,20.480] | (0.078,0.480) 0.00
L.10011 | [51/32,52/32) 19.883 20 (19.692,20.078] (-0.308,0.078] 0.00
1.10100 | {52/32,53/32)| 19.505 20 |(19.321,19.692] | (-0.679,-0.308] | 48.72
110101 | [53/32,54/32) | 19.140 19 (18.963,19.321] | (-0.037,0.321] | 0.00
1.10110 | [54/32,55/32) 8.789 19 (18.618,18.963) | (-0.382,-0.037) 0.00
110111 | [55/32,56/32) 18.450 18 (18.286,18.618) (0.286,0.618] 35.14
1.11000 |[56/32,57/32) | 18.124 18 | (17.965,18.286] | (-0.035,0.286) | 0.00
1.11001 | (57/32,58/32) | 17.809 18 | (17.655,17.965] | (-0.345,-0.035] | 0.00
1.11010 | [58/32,59/32) | 17.504 18 | (17.356,17.653] | (-0.644,0.345] | 48.57
111011 | [59/32,60/32) | 17.210 17 | (17.067,17.356] | (0.067,0.356] | 0.00
111100 | [60/32,61/32) 16.926 17 (16.787,17.067} | (-0.213,0.067) 0.00
111101 |[61/32,62/32)| 16.650 17 | (16.516,16.787] | (-0.484,-0.213) | 0.00
111110 | (62/32,63/32) | 16.384 16 (16.254,16.516] | (0.254,0.516] | 6.06
111111 | (63/32,64/32) 16.126 16 (16.000,16.254] | (0.000,0.254] 0.00

Table A-1: Optimal 5 bits in,4 bits out Reciprocal Table

Input Index Bits | Positive Part Input Index Bits | Negative Part
1.00 00 xx 0.1 11111101 1.00 xx 00 0.0000 0000 0
1.00 01 xx 0.1 11011111 1.00 xx 01 0.0000 0011 0
1.00 10 xx 0.1 1100001 1 1.00 xx 10 0.0000 0111 0
1.00 11 xx 0.1 1011000 1 1.00 xx 11 0.0000 1010 0
1.01 00 xx 0.1 1001010 1 1.01 xx 00 0.0000 0000 0
1.01 01 xx 0.1 1000000 1 1.01 xx 01 0.0000 0010 0
1.01 10 xx 0.1 0111000 1 1.01 xx 10 0.0000 0101 0
1.01 11 xx 0.1 0110000 1 1.01 xx 11 0.0000 0111 0
1.10 00 xx 0.1 0101001 1 1.10 xx 00 0.0000 0000 0
1.10 01 xx 0.1 0100011 1 1.10 xx 01 0.0000 0010 0
1.10 10 xx 0.1 0011100 1 1.10 xx 10 0.0000 0011 0
1.10 11 xx 0.1 0010111 1 1.10 xx 11 0.0000 0101 0
1.11 00 xx 0.1 0010001 1 1.11 xx 00 0.0000 0000 0
1.11 01 xx 0.1 0001101 1 1.11 xx 01 0.0000 0010 0
1.11 10 xx 0.1 0001000 1 1.11 xx 10 0.0000 0011 0
1.11 11 xx 0.1 0000100 1 1.11 xx 11 0.0000 0100 0

Table A-2: (4,7) positive part and (4,4) negative part ROM tables composing the
orrow-save result of a 6-bits-in,5-bits-out optimal bipartite reciprocal table

26

Chopped | Low end | Middle point | Rounded | Table P | Table N | Computed Rounded
Input Reciprocal | Reciprocal | Reciprocal Value+% Value | Reciprocal [Comp. Recip.
x(1/64) | x(1/64) x(1/64) x(1/64) | x(1/64) | x(1/64) | x(1/64) x(1/64)
64 64.000 63.504 64 63.625 0.00 63.625 64
65 63.015 62.534 63 0.75 62.875 63
66 62.061 61.594 62 1.75 61.875 62
67 61.134 60.681 61 2.50 61.125 61
68 60.235 59.796 60 59.875 0.00 59.875 60
69 59.362 58.935 59 0.75 59.125 59
70 58.514 58.099 58 1.75 58.125 58
71 57.690 57.287 57 2.50 57.375 57
72 56.889 56.497 56 58.375 0.00 56.375 56
73 56.110 55.728 56 0.75 55.625 56
74 55.351 54.980 55 1.75 54.625 55
75 54.613 54.252 54 2.50 53.875 54
76 53.895 53.542 54 54.125 0.00 54.125 54
77 53.195 52.852 53 0.75 53.375 53
78 52.513 52.178 52 1.75 52.375 52
79 51.848 51.522 52 2.50 51.625 52
80 51.200 50.882 51 50.825 0.00 50.625 51
81 50.568 50.258 50 0.50 50.125 50
82 49.951 49.648 50 1.25 49.625 50
83 49.349 49.054 49 1.75 49.125 49
84 48.762 48.473 48 48.125 0.00 48.125 48
85 48.188 47.906 48 0.50 47.625 48
86 47.628 47.353 47 1.25 47.125 47
87 47.080 46.811 47 1.75 46.625 47
88 46.545 46.282 46 48.125 0.00 46.125 46
89 46.022 45.765 46 0.50 45.625 46
90 45.511 45.260 45 1.25 45.125 45
91 45.011 44.765 45 1.75 44,625 45
92 44.522 44,281 44 44.125 0.00 44.125 44
93 44.043 43.807 44 0.50 43.625 44
94 43.574 43.344 43 1.25 43.125 43
95 43.116 42.890 43 1.75 42.625 43
96 42.667 42.446 42 42.375 0.00 42.375 42
97 42.227 42.010 42 0.50 41.875 42
98 41.796 41.584 42 0.75 41.625 42
99 41.374 41.166 41 1.25 41.125 41
100 40.960 40.756 41 40.875 0.00 40.875 41
101 40.554 40.355 40 0.50 40.375 40
102 40.157 39.961 40 0.75 39.125 40
103 39.767 39.575 40 1.25 39.625 40
104 39.385 39.196 39 39.125 0.00 39.125 39
105 39.010 38.825 39 0.50 38.625 39
106 38.642 38.460 38 0.75 38.375 38
107 38.280 38.102 38 1.25 37.875 38
108 37.926 37.751 38 37.875 0.00 37.875 38
109 37.578 37.406 37 0.50 37.375 37
110 37.236 37.068 37 0.75 37.125 37
111 36.901 36.735 37 1.25 36.625 37
112 36.571 36.409 36 36.375 0.00 36.375 36
113 36.248 36.088 36 0.50 35.875 36
114 35.930 35.773 36 0.75 35.625 36
115 35.617 35.463 35 1.00 35.375 35
116 35.310 35.159 35 35.375 0.00 35.375 35
117 35.009 34.860 35 0.50 34.875 35
118 34.712 34.565 35 0.75 34.625 35
119 34.420 34.276 34 1.00 34.375 34
120 34.133 33.992 34 34.125 0.00 34.125 34
121 33.851 33.712 34 0.50 33.625 34
122 33.574 33.437 33 0.75 33.375 33
123 33.301 33.166 33 1.00 33.125 33
124 33.032 32.900 33 33.125 0.00 33.125 33
125 32.768 32.637 33 0.50 32,625 33
126 32.508 32.379 32 0.75 32.375 32
127 32.252 32.125 32 1.00 32.125 32

Table A-3: Optimal 5 bit reciprocals generated from the (6,5) bipartite reciprocal table

27

Input Index Bits | Positive Part | Input Index Bits Positive Part Input Index Bits | Negative Part Input Index Bits Negative Part
1.000 000 oxx | 0.1 1111311310 1 1.100 000 xxx 0.1 0101010100 1 1.000 xxx 000 | 0.000000 00000 0 1.100 xcx 000 0.000000 00000 0
1.000 001 xxx | 0.1 11110111101 | 1.100 001 xxx 0.1 0101000110 1 1.000 xxx 001 | 0.000000 00100 0 | 1.100 xocx 001 0.000000 00010 0
1.000 010 xxx | 0.1 11101111111 | 1.100 010 xxx 0.1 0100111000 1 1.000 xxx 010 | 0.000000 00111 0 | 1.100 sxxx 010 0.000000 90100 0
1.000 011 xxx | 0.1 11101000101 | 1.100 011 xxx 0.1 0100101100 1 1.000 xxx 011 | 0.000000 01011 0 | 1.100 xxx 011 0.000000 00110 0
1.000 100 xxx | 0.1 11100001011 | 1.100 100 xxx 0.1 01000111101 1.000 xxx 100 | 0.000000 011110 | 1.100 xxx 100 0.000000 01000 0
1.000 101 xxx | 0.1 11011010101 | 1.100 101 xxx 0.1 0100010010 1 1.000 xxx 101 | 0.000000 10010 0 | 1.100 xxx 101 0.000000 01010 0
1.000 110 xxx | 0.1 11010100001 | 1.100 110 xxx 0.1 0100000100 1 1.000 xxx 110 | 0.000000 101100 | 1.100 xxx 110 0.000000 01100 0
1.000 111 xxx | 0.1 11001101011 | 1.100 111 xxx 0.1 0011111000 1 1.000 xxx 111 | 0.000000 11001 0 | 1.100 xxx 111 0.000000 01110 0
1.001 000 xxx | 0.1 11000110101 | 1.101 000 xxx 0.1 0011101100 1 1.001 xoxx 000 | 0.000000 00000 0 | 1.101 xocx 000 0.000000 00000 0
1.001 001 xxx | 0.1 11010000101 | 1.101 001 xxx 0.1 0011100000 1 1.001 xacx 001 | 0.000000 00011 0 | 1.101 xxx 001 0.000000 00001 0
1.001 010 xxx | 0.1 10111010101 | 1.101 010 xxx 0.1 0011010100 1 1.001 xxx 010 | 0.000000 00110 0 | 1.101 xxx 010 0.000000 00011 0
1.001 011 xxx | 0.1 10110100111 | 1.101 011 sxxx 0.1 0011001000 1 1.001 xxx 011 { 0.000000 01001 0 { 1.101 xxx 011 0.000000 00100 0
1.001 100 xxx | 0.1 10101111001 | 1.101 100 xoxx 0.1 0010111100 1 1.001 xxx 100 { 0.000000 01100 0 | 1.101 xxx 100 0.000000 00110 0
1.001 101 xxx | 0.1 1010100101 1 | 1.101 101 xxx 0.1 0010110101 1 1.001 xxxx 101 | 0.000000 01111 0 [1.101 xxx 101 0.000000 00111 0
1.001 110 xxx | 0.1 1010010000 1 | 1.101 110 xxx 0.1 0010100111 1 1.001 xxx 110 | 0.000000 10010 0 | 1.101 xxx 110 0.000000 01001 0
1.001 111 xxx | 0.1 10011110111 { 1.101 111 soex 0.1 0010011101 1 1.001 xxx 111 | 0.000000 10101 0 | 1.101 xx 111 0.000000 01011 0
1.010 000 xxx | 0.1 10011001011 | 1.110 000 xxx 0.1 0010010001 1 1.010 xxx 000 | 0.000000 00000 0 | 1.110 xxx 000 0.000000 00000 0
1.010 001 xxx | 0.1 1001010001 1 | 1.110 001 xxx 0.1 0010001001 1 1.010 xxx 001 | 0.000000 00011 0 | 1.110 xoxx 001 0.000000 00001 0
1.010 010 xxx | 0.1 10001111011 | 1.1310 010 xxx 0.1 00011111011 1.010 xxx 010 | 0.000000 00110 0 | 1.110 xxx 010 0.000000 00011 0
1.010 011 x| 0.1 10001010111 | 1.110 011 xoxx 0.1 0001110101 1 1.010 xxx 011 | 0.000000 01001 0 | 1.110 xoxx 011 0.000000 00100 0
1.010 100 xxx | 0.1 10000101111 | 1.110 100 xxx 0.1 0001101001 1 1.010 xxx 100 | 0.000000 01011 0 { 1.110 xxx 100 0.000000 00110 0
1.010 101 xxx { 0.1 10000001011 | 1.110 101 xxx 0.1 0001100001 1 1.010 xxx 101 | 0.000000 01101 0 { 1.110 xxx 101 0.000000 00111 0
1.010 110 xxx | 0.1 01111100111 ! 1.110 110 xxx 0.1 0001011000 1 1.010 xx 110 | 0.000000 011110 { 1.110 xxx 110 0.000000 01001 0
1.010 111 xxx | 0.1 01111000111 | 1.110 111 s0x 0.1 0001001101 1 1.010 xxx 111 | 0.000000 10001 0 | 1.110 xxx 111 0.000000 01010 0
1.011 000 xxx { 0.1 01110100001 | 1.111 000 ox 0.1 0001000101 1 1.011 xxx 000 { 0.000000 00000 0 | 1.111 xxx 000 0.000000 00000 0
1.011 001 xxx | 0.1 01110000001 | 1.111 001 xxx 0.1 0000111100 1 1.011 xxx 001 { 0.000000 00010 0 [1.111 xxx 001 0.000000 00001 0
1011010 x| 0.1 01101100001 { 1.111 010 xxx 0.1 0000110001 1 1.011 xxx 010 | 0.000000 00100 0 | 1.111 xxx 010 0.000000 00011 0
1.011 011 xxx | 0.1 01101000001 { 1.111 011 xxx 0.1 0000101001 1 1.011 xxx 011 | 0.000000 00110 0 | 1.111 xxx 011 0.000000 00100 0
1.011 100 xxx | 0.1 01100100001 | 1.111 100 xxx 0.1 0000100001 1 1.011 xxx 100 | 0.000000 01000 0 | 1.111 xxx 100 0.000000 00110 0
1.011 101 xxx | 0.1 01100000001 | 1.111 101 xxx 0.1 0000011001 1 1.011 oxx 101 | 0.000000 01010 0 { 1.111 xxx 101 0.000000 00111 0
1.011 110 xxx | 0.1 01011100001 | 1.111 110 xxx 0.1 0000010001 1 1.011 xox 110 | 0.000000 01100 0 { 1.111 xxx 110 0.000000 01001 0
1.011 111 xxx | 0.1 01011001001 | 1.111 111 xxx 0.1 0000001001 1 1.011 xxx 111 {0.000000 011310 0 { 1.111 xxx 111 0.000000 01010 0

Table A-4: (6,10) positive part and (8,5) negative part ROM tables composing the
borrow-save result of a 9-bits-in,8-bits-out faithful bipartite reciprocal table

Chopped | Low end | Middle point | Rounded | Table P | Table N | Prerounded Bopded

Input | Reciprocal | Reciprocal | Reciprocal | Value+} | Value | Reciprocal | Reciprocal

x(1/512) | x(1/512) | x(1/512) | x(1/512) | x(1/512) | x(1/512) | x(1/512) | x(1/512)

545 480.998 480.557 481 481.375 1.00 480.375 480
546 480.117 479.678 480 481.375 1.75 479.625 480-
Table A-§: Two lines from the 256 line enumeration of reciprocals
generated by the (9,8) faithful bipartite reciprocal table
Chopped | Low end | \Middie point | Iable P | Table N , Pre-rounded | Diflerence ' Chopped | Low end | Middle point | Table P | Table N | Pre-rounded | Difference
Input | Reciprocal | Reciprocal | Value Value | Reciprocal | inuips | Input | Reciprocal | Reciprocal | Value Value | Reciprocal | in ulps
x(1/1024) | x(1/312) | x(1/512) | x(1/512) | x(1/512) 1 x(1/512) ! x(1/1024) | x(1/512) | x(1/512) | x(1/512) ! x{1/512) | x(1/312)
1024 $12.000 311.750 511.663 0.000 511.683 0.087 1056 496.483 496.250 496.266 0.000 496.266 -0.016
1025 511.500 511.251 0.47¢ 511.189 0.062 - . o - - - -
1026 511.002 510.733 0.947 510.716 0.037 1063 493.215 492.984 3.208 492.968 0.016
1027 510.504 510.256 1419 510.244 0.012 1084 492.732 492.520 492.561 0.000 492.561 | -0.040
1028 $510.008 509.760 1.890 509.773 -0.013 - - - - . -

1029 509.512 509.265 2.360 509.302 -0.038 1071 449.331 489.303 3.208 489.263 | 0.040
1030 509.017 508.770 2.830 308.833 -0.063 1072 489.073 488.847 488.911 0.000 488.911 -0.064
1031 508.524 508.277 3.298 508.365 -0.087 1073 488.619 488.391 0.474 488.437 -0.04
1032 508.031 307.785 307.72¢ 0.000 307.12% 0.061 1074 488.164 487.937 0.947 487.964 -0.027
1033 507.539 507.294 0474 307.250 0.043 1073 487.710 487.483 1.419 487.492 -0.009
1034 507.048 506.803 0.947 506.778 0.026 1076 487.257 487.030 1.890 487.021 0.009
1035 506.558 306.314 1419 506.305 0.008 1077 486.804 486.578 2.360 486.350 0.028
1036 $06.069 505.825 1.890 505.834 -0.009 1078 486.353 486.127 2.830 486.081 0.046
1037 505.381 505.338 2.360 505.364 -0.026 1079 485.902 485.677 3.298 MIS 0.064
1038 505.094 504.851 2.830 ‘l 504.895 -0.043 1080 485.452 485.227 485.315 0.000 485.315 -0.087
1039 504.608 504.368 3298 | 504.426 0061 ! 1081 485.003 484.779 0474 484.841 -0.062
1040 504.123 503.881 503.846 0.000 303.846 0.035 1082 484.555 484.331 0.947 484.368 -0.037
“ - . - . - ; 1083 484.107 483.884 1419 483.896 -0.012
1047 500.733 500.514 3.298 300.548 -0.035 ! 1084 483.661 483.438 1.890 483425 0.013
1048 500275 500.036 500.027 0.000 500.027 0.009 1085 483.215 482.992 2.360 482.954 0.038
- - “ - - - i 1086 482.770 482.548 2.830 482.485 0.063
1085 496.955 496.720 3.298 196.729 -0.009 I 1087 482.326 482.104 3.208 482.017 0.087

Table A-6: The pre-rounded reciprocals and the errors incurred in the first block
of the 10-bits-in 8-bits-out bipartite reciprocal table

28

