IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1,

JANUARY 2000

An |IEEE Compliant Floating-Point Adder
that Conforms with the Pipelined
Packet-Forwarding Paradigm

Asger Munk Nielsen, David W. Matula, Member, IEEE Computer Society,
C.N. Lyu, and Guy Even, Member, IEEE Computer Society

Abstract—This paper presents a floating-point addition algorithm and adder pipeline design employing a packet forwarding pipeline
paradigm. The packet forwarding format and the proposed algorithms constitute a new paradigm for handling data hazards in deeply
pipelined floating-point pipelines. The addition and rounding algorithms employ a four stage execution phase pipeline with each stage
suitable for implementation in a short clock period, assuming about 15 logic levels per cycle. The first two cycles are related to addition
proper and are the focus of this paper. The last two cycles perform the rounding and have been covered in a paper by Matula and
Nielsen [8]. The addition algorithm accepts one operand in a standard binary floating-point format at the start of cycle one. The second
operand is represented in the packet forwarding floating-point format, namely, it is divided into four parts: the sign bit, the exponent
string, the principal part of the significand, and the carry-round packet. The first three parts of the second operand are input at the start
of cycle one and the carry-round packet is input at the start of cycle two. The result is output in two formats that both represent the
rounded result as required by the IEEE 754 standard. The result is output in the packet forwarding floating-point format at the end of
cycles two and three to allow forwarding with an effective latency of two cycles. The result is also output in standard IEEE 754 binary
format at the end of cycle four for retirement to a register. The packet forwarding result is thus available with an effective two cycle
latency for forwarding to the start of the adder pipeline or to a cooperating multiplier pipeline accepting a packet forwarding operand.

33

The effective latency of the proposed design is two cycles for successive dependent operations while preserving IEEE 754 binary

floating-point compatibility.

Index Terms—Floating-point arithmetic, floating-point addition, IEEE floating-point rounding, redundant number representations.

<+

1 INTRODUCTION
1.1 Background

ALTHOUGH simple in conception, floating-point addition

is a surprisingly complex arithmetic operation since it
involves several time-consuming dependent operations.
The conceptual steps of the algorithm are (see Fig. la):
Compute the exponent difference, align the significand with
the smaller exponent by shifting it right by an amount equal
to the exponent difference, add or subtract the significands,
normalize the sum by shifting out leading zeros to the left,
and round the final result. As described, the algorithm
consists of two potentially full precision shifts and three
additions (exponent subtract, significand addition, and

e A.M. Nielsen is with MIPS Denmark, Lautrupvang 2 B, DK-2750
Ballerup, Denmark.

o D.W. Matula is with the Department of Computer Science and
Engineering, School of Engineering and Applied Science, Southern
Methodist University, PO Box 750122, Dallas, TX 75275-0122.

E-mail: matula@seas.smu.edu.

o C.N. Lyu is with Nisham Systems, 3850 N. First St., Bldg. A2, Suite B,
San Jose, CA 95134. E-mail: allenlyu@yahoo.com.

o G. Even is with the Department of Electrical Engineering-Systems, Tel-
Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel.

E-mail: guy@eng.tau.ac.il.

Revised manuscript received 7 June 1999; accepted 7 July 1999.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number 110008.

rounding). Two of the three addition operations are slow
in the sense that they require a delay that scales
logarithmically with the precision of the number.

In order to minimize latency, the addition unit can be
divided into two separate datapaths operating in parallel
(see Fig. 1b), as investigated in numerous contributions to
the literature, e.g., [5], [12], [13], [7]. The left path operates
under the assumption that the exponents of the two
operands are different by no more than a unit, ie,
le1 — ez| < 1. In this case, only a short prealignment shift
of at most one position is needed. Since the operands are
close in range, the difference (or sum if the operands have
opposite signs) of the aligned significands may be close to
zero and, consequently, a potentially long normalization
shift is required. If, on the other hand, the exponent
difference is “large,” i.e., |e; —es] > 2, a potentially long
prealignment shift is necessary. It follows in this case that
the post normalization step is trivial due to absence of
significand cancellation.

Further minimization of latency was suggested by
combining the rounding increment with the addition of
the significands [13]. This minimization requires that the
addition of the significands compute the sum, sum + 1, and
sum + 2 in parallel by using a compound adder. Quach and
Flynn [13] report a latency of less than 20ns for a double
precision floating-point adder that was laid out in a

0018-9340/00/$10.00 © 2000 IEEE

34

ler —es| <1 ler —es] > 2
Ezxponent Ezxponent Ezxponent
Subtract predict Subtract
Alignment Significand Alignment
Shift Add Shift
Significand N . Significand
Add ormalize Add
Normalize Round Round
Round \ Select /
(a) (b)

Fig. 1. Traditional floating point addition algorithms.

1y technology. Modern microprocessors require two to four
clock cycles for floating-point addition; the faster the clock
is, the more clock cycles are required. Different imple-
mentations of floating-point adders have different preci-
sions and some use multiply-and-add units, hence,
comparing the latencies of floating-point adders is technol-
ogy dependent and not trivial. We estimate that each
pipeline stage in our algorithm requires at most 15 logic
levels. This means that the pipelined packet-forwarding
paradigm can lead to designs with shorter latencies.

Oberman et al. [11] proposed a variable latency floating-
point addition algorithm that is based on a three stage
pipeline. Their algorithm is designed to output the sum
after one, two, or three cycles, depending on the values of
the operands. They propose reducing the average latency
using their algorithm, but still have a worst case latency of
three clock cycles.

1.2 Related Work

This paper relies on two previous papers [2], [8]. In the
paper of Daumas and Matula [2], recodings of redundant
numbers are defined and investigated. These definitions
and properties play a crucial role in our addition algorithm
since they enable us to avoid compressing the sum into a
nonredundant number and allow for obtaining a short
latency. In addition, Daumas and Matula show how to
recode a borrow save encoded digit string to obtain a radix-
4 Booth recoding. This recoding can be employed to design

1. Some examples are [9]: 1) DEC-Alpha 21164 with a clock rate of
500MHz requires four clock cycles; 2) MIPS R10000 with a clock rate of
200MHz requires two clock cycles; and 3) HP PA-8000 with a clock rate of
250MHz requires four clock cycles (and uses a fused multiply-add unit).

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000
a floating-point multiplier that complies with the pipelined
packet forwarding paradigm.

The paper of Matula and Nielsen [8] presents a packet
forwarding floating-point format, sets the pipelining paradigm
with packet forwarding, and presents a design of a
rounding unit for such a microarchitecture. In our paper,
we present only the first two pipeline stages of the adder.
The last two stages of the pipeline are the rounding unit that
is presented in [8]. The same rounding unit can be used in a
multiplier that conforms with the pipelined packet for-
warding format.

The rounding unit presented in [8] is fed a significand in
the range (1, 4) that is encoded by a borrow save digit string
of 132 digits. During the third stage (which is the first
rounding stage), the rounding unit computes the rounding
decision and outputs the 2-digit carry-round packet. During
the last stage, the rounding unit adds the 64 most-
significant digits and the carry-round packet to obtain the
rounded standard (nonredundant) 64-bit significand.

1.3 Contribution

The main contribution of this paper is in demonstrating the
feasibility of a floating-point addition algorithm that
complies with the pipelined packet-forwarding paradigm.

We distinguish between 1) redundant adders that output
a redundant representation of the sum, such as 3 : 2- and
4 :2-adders and 2) nonredundant adders that output a
nonredundant binary representation of the sum (e.g., 2:1-
adders). The delay of redundant adders is constant and
does not depend on the length of the addends, whereas the
delay of a nonredundant adder scales logarithmically with
the length of the addends.

We show that successive dependent floating-point
additions in the pipelined packet-forwarding paradigm
can be performed with only one nonredundant addition
at the end of the whole computation. The elimination of
intermediate nonredundant additions plays a key role in
reducing the latency of our floating-point addition
algorithm.

1.4 Overview

Our goal is to design a floating-point adder suitable for
implementation with a short clock period with an effective
latency of two clock cycles for successive dependent
additions. In terms of logic levels, the effective latency of
the proposed algorithm is roughly 30 logic levels since we
estimate the latency of each stage to be roughly 15 logic
levels.

To meet this goal, we rearrange and avoid nonessential
2:1-addition steps of traditional floating-point addition
implementations. This is achieved by using the packet
forwarding floating-point format [8]. A preliminary ex-
ploration of this format was described in [7]. Since one of
the inputs of the adder can be represented in redundant
format, there is no need to perform a 2:1-addition when the
result is forwarded. Hence, the only 2:1-addition step in the
addition algorithm is deferred to the latter portion of the
rounding phase, where it contributes no delay to the data
forwarding process. The only additions that are employed
before the rounding step are redundant additions.

NIELSEN ET AL.: AN IEEE COMPLIANT FLOATING-POINT ADDER THAT CONFORMS WITH THE PIPELINED PACKET-FORWARDING...

35

standard addend redundant addend
(s1,e1,f1) (52002, fF, f5)

small exponent difference large exponent difference
—1<e; —ex <4 V* vy eos—ep >2o0re; —ex>5
Exponent Exponent
Predict Subtract
Ist cycle @ Alignlmenl
Shift

carry-round packet

\ Red. Add

| Red. Add

C2

Normalize

2nd cycle |

Select
sign, exponent, principal part packet
I O S
Round Y ’
3rd cycle signed sticky comp.
carry-round packet
f———mmmm— -
c
4th cycle Round
final compression

%

standard rounded sum

(s,e, f)
Fig. 2. Block diagram of the proposed floating-point addition algorithm.

Fig. 2 depicts a block diagram of the proposed addition
algorithm. The adder accepts one operand in standard
format, denoted by (s1, €1, f1), where s; denotes the sign bit,
e; denotes the exponent string, and f; denotes the
significand string. The adder accepts the other operand in
the pipelined packet-forwarding format (reviewed in
Section 2.1), denoted by (s2, €2, f, f5 , ¢2), where sy denotes
the sign bit, e; denotes the exponent string, f and fy
denote the borrow-save encoded principal part, and c;
denotes the carry-round packet. Note that the carry-round
packet is only fed at the beginning of the second clock cycle.
The rounded sum is output in two formats that represent
equal values. At the end of the fourth cycle, the result is
output according to the standard IEEE 754 binary format
and may be stored in a floating-point register. The result is
also output in the pipelined packet forwarding floating-
point format at the end of cycles two and three to allow
forwarding with an effective latency of two cycles. The sign
bit, exponent string, and borrow-save encoded principal
part of the sum are output at the end of the second cycle
and the carry-round packet of the result is output at the end
of the third cycle.

The proposed addition algorithm is also divided into two
separate datapaths operating in parallel depending on the
exponent difference. Note that the range used for the small
exponent difference is slightly extended to simplify the
processing in the large exponent difference path (see

Section 4). The first two cycles of the pipeline deal with
addition proper and are the focus of this paper. The input to
the third pipeline stage consists of a sign bit, an exponent
string, and a significand in the range (1,4) represented by a
borrow-save encoded 132-digit string. The input to the third
pipeline stage is not necessarily the precise sum, but
represents a value that is rounded to the same value that
the exact sum is rounded to.

The last two stages of the pipeline are presented in [8]
and consist of computing the signs (i.e., negative, zero, or
positive) of the “lower half” and the “upper part” of the
borrow-save encoded digit string. These signs, together
with the least significant, guard, and round digits,
determine the carry-round packet which is output at the
end of cycle three. In cycle four, the standard result is
obtained by a 4:2-redundant addition of the principal part
packet and the carry-round packet that results with a
borrow-save encoded digit string. This borrow-save en-
coded digit string is then compressed into a binary encoded
bit string and normalized to the range [1,2) to produce the
standard result at the end of cycle four. Thus, only one
nonredundant addition is used and this addition takes
place in the fourth pipeline stage. More details on the
computation of the carry-round packet appear in
Appendix A.

36

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000

Sign Exponent ‘314 “313 “/’12 ‘ ‘eo ‘
Significand ‘ 1 l“z‘ "2‘ ’%o ‘%1 ‘%2 %3‘
(a)
Sign Exponent ‘%4 ‘913 ‘912 ‘ ‘eo ‘
%2 | %
Carry-Round Packet %; %f?
FF [F | ot o [t
Principal Part ZZ Zj Zz :; ZZ_Z ZZ Z_j

(b)

Fig. 3. Floating-point operand formats: (a) Standard IEEE 754 operand format; (b) Packet-forwarding operand format.

1.5 Organization

In Section 2, we review the general setting and the main
techniques of our algorithm. This includes a review of the
pipelined packet forwarding format, the pipelined packet
forwarding, recoding, and partial compression. In Section 3,
the adder design for small exponent differences is dis-
cussed. In Section 4, the adder datapath for large exponent
differences is described. Summary conclusions are given in
Section 5. Appendix A outlines how the carry-round packet
is computed. Appendix B contains proofs of the compres-
sion properties of 3:2- and 4:2-redundant adders.

2 PRELIMINARIES

In this section, we provide a brief description of the packet-
forwarding format, recoding of borrow-save encoded digit
strings, and partial compression results. The reader is
referred to the paper of Daumas and Matula [2] and to
Appendix B for more details and proofs.

2.1 Pipelined Packet-Forwarding Format
In this section, we briefly review the pipelined packet-
forwarding floating-point format presented by Matula and
Nielsen [8].

A standard double extended IEEE 754 floating-point
operand with unique factorization

(12 f
as specified in [1], consists of (see Fig. 3a):

1. asign bit denoted by s;
an encoded exponent field of 15 bits denoted by e;
and

3. anormalized binary significand having 63 bits to the
right of the radix point denoted by f = l.ajas - - - ags.

The packet-forwarding floating-point format [8] is depicted
in Fig. 3b. A floating-point operand is represented by four

parts: a sign bit, an exponent string, the principal part of the
significand, and the carry-round packet. The packet-for-
warding format is a redundant representation of floating-
point numbers and, thus, factorization is not unique. The
factorization of floating-point numbers according to the
packet-forwarding format is

(=1)°-2° (f+c-27%) (1)

with the same sign bit and exponent format as in the
standard double extended precision format. The significand
factor, (f+c-27%), in (1) is in the prenormalized range
1< f+c-27% <4 and is partitioned into two parts:

1. f=1by.biby---bsy with b; € {—1,0,1} is a 64 digit
borrow-save encoded digit string termed the princi-
pal part packet. Using the notation in Fig. 3b, each
digit b; € {—1,0,1} of the principal part is repre-
sented by a positive bit b and a negative bit b;,
where b; = b} — b;.

2. ¢ =cpces, termed the carry-round packet, is a two
digit borrow-save encoded digit string with
llcsaces|| € {—2,—1,0,1,2}. Note that a two digit
borrow-save encoded digit string can have the
values 3 or (—3), but the carry-round packet is
restricted to the set {—2,—1,0,1,2}.

One can easily verify that powers of two (e.g., = = 2¥, where
k is an integer) have up to three possible factorizations,
namely, the significand factor can equal either 1, 2, or 4,
provided that the exponent lies within the range of
representable exponent values. Values that are not powers
of two have two factorizations, namely, the significand
factor can belong either to the interval (1,2) or to the
interval (2,4), provided that the exponent lies within the
range of representable exponent values. This slackness
plays a key role in making it possible to avoid full
compression of the results and reducing the latency of
forwarded results.

NIELSEN ET AL.: AN IEEE COMPLIANT FLOATING-POINT ADDER THAT CONFORMS WITH THE PIPELINED PACKET-FORWARDING... 37

sign, exponent and
principal part input

carry-round input

standard input —| Al | A2 | RI

R2 | standard rounded sum

'

sign, exponent and
principal part output

carry-round output

Fig. 4. Input-Output schedule of pipeline.

2.2 The Pipelined Packet-Forwarding Paradigm

In this section, we briefly overview the pipelining paradigm
suggested by Matula and Nielsen [8].

A floating-point adder or floating-point multiplier,
according to the pipelined packet-forwarding paradigm, is
implemented by a pipeline of four stages as depicted in
Fig. 4. The first two stages perform the operation (ie.,
addition or multiplication) and the last two stages deal with
rounding. The pipeline accepts two operands: one in
standard format and the other in the pipelined packet-
forwarding format. The operand in standard format is fed
to the first stage and the operand in the pipelined packet-
forwarding format is fed to the first two stages as follows:
The sign-bit, the exponent, and the principal part are fed to
the first stage. The carry-round packet is fed to the second
stage. The result is output in two formats that represent the
same value. The standard rounded result is output by the
fourth stage. The result is also output according to the
pipelined packet-forwarding format as follows: The sign,
exponent, and principal part of the result are output by the
second stage and the carry-round packet is output by the
third stage.

Fig. 5 depicts an execution of successive dependent
floating-point operations utilizing the proposed pipelining
paradigm. The effective latency is two clock cycles and
there is only one stall cycle between successive dependent
operations.

MI | M2| RI | R2

Fig. 5. Execution of successive dependent operations.

2.3 Recoding

In this section, we briefly review P- and N- recoding
presented by Daumas and Matula [2] and extend them to
3:2-recodings. We review four definitions of recodings (P, N,
mmp, and ppm) and their implementations [2], [4], [6], [10].

We represent a k-digit borrow-save encoded digit string
a=ap1a5-2---ay by a 2xk bit array. The digit a; €
{-1,0,1} is encoded by a “positive” bit a; € {0,1} and a
“negative” bit a; € {0,1}. The value of the digit a; equals
a; =af —a; € {-1,0,1}.

Recodings of borrow-save encoded digit strings were
defined by Daumas and Matula [2]. First, we define
recodings of single borrow-save digits depicted in Fig. 6.

Definition 1. Let (a™,a™) denote a borrow-save digit. The P-
recoding of (at,a™) is a 2-digit borrow save encoded string,
denoted by (z*,0), (0,27), where

2T =a" AND not(a”)
r~ =a" XORa .

The N-recoding of (a®,a™) is a 2-digit borrow save
encoded string, denoted by (y*,0), (0,y~), where

yt =a" XOR a~
y~ =a~ AND not(a™).

Note that P and N-recodings do not change the value.
Namely, at —a~ =2z" —2~ and a" —a™ = -2y +y*.

The following definition extends the definitions of P-
and N-recodings to borrow-save encoded digit strings, as
depicted in Fig. 7.

Definition 2. Let a = aj_ja_2 - - - ag denote a k-digit borrow-
save encoded digit string. The P-recoding of a, denoted by
b = P(a), is a k+ 1-digit borrow-save encoded digit string
defined by:

+ [af ANDnot(a;) ific{l,....k}
K _{0 ifi=0

_ ai XORa; ifi€{0,...,k—1}
i :{0 ifi—=k

The N-recoding of a, denoted by ¢ = N(a), is a k+ 1-digit
borrow-save encoded digit string defined by:

38

Fig. 6. P and N recodings of a single borrow-save digit.

y}_{anORai_ ifi€{0,....,k—1}
"o ifi=k
_{not(afl)ANDai1 ifie{l,....k}
Yi =0 ifi=0.

Note that P- and N-recodings can be implemented by a
circuit that resembles a Half-Adder line: only one of the
inputs of an AND-gate needs to be inverted. This implies
that delay associated with computing P- and N-recodings
equals the maximum of the delay of an XOR-gate and the

sum of the delays of an inverter and an AND-gate.

P- and N-recodings recode a borrow-save encoded digit
string and are analogous to Half-Adder lines. Our addition
algorithm is based also on 3 : 2-recodings that are analo-
gous to Full-Adder lines, namely, 3:2-counters [4], [6]. These
recodings are fed digit strings in which each digit comprises
three bits: Two bits have positive weight and one bit has
negative weight (or vice versa) and output borrow-save
encoded digit strings.

We generalize the definitions of P- and N-recodings to
3 : 2-recodings as depicted in Fig. 8. Consider three bits
a*t,a”,b" that represent the value a* —a™ +b". A ppm-
recoding adds these three bits into two bits z*, 2z~ that
represent the value 2z — 2~ as follows:

N 1 ifat—a +07>1
xT =
0 otherwise
T =a" ®a @b
The reason we consider ppm-recoding to be a generalization
of P-recoding is that

+ + + +
ab | a5 | ab | af P RIS I
>
;| 4y | 45] 4 Xl %2 Y1 %o
+ +
ab | a5 | at | a N b3S IO IR A RO
>
s | Gy | 451 4 Y| Yo Yi| Yo

Fig. 7. P- and N-recoding of borrow-save encoded digit strings.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000

ot

ppm
a” — zt
bt z~
at

mmp
a” — Yt
b~ Yy~

Fig. 8. ppm- and mmp-recodings.
ppm(a*,a”,0) = P(a",a”).

Similarly, given three bits a™,a~, b~ that represent the value
at —a~b”, mmp-recoding adds these three bits into two bits
y*,y~ that represent the value 2y* — y~ as follows:

1 fat—a= —b- < -1
vo= 0 otherwise
yh=at@a @b.

The reason we consider mmp-recoding to be a general-
ization of N-recoding is that

mmp(a*,a”,0) = N(a",a").

Note that ppm- and mmp-recodings can be extended to
recodings of 3 x k bit arrays. In fact, ppm- and mmp-
recodings are redundant additions in which a 3 x k bit
array is transformed into a 2 x (k+1) bit array that
represents the same value. One can implement mmp- and
ppm-recodings by a Full-Adder line in which one of the
inputs and one of the outputs of each Full-Adder is inverted
(for example, in ppm-recoding, the b~ input and the sum bit
output are inverted). This implies that delay associated with
computing ppm and mmp-recodings is not greater than the
delay of a Full-Adder plus the delay of two inverter.

2.4 Partial Compression

In this section, we briefly review the partial compression
properties of P- and N- recodings proved by Daumas and
Matula [2]. We extend these properties to 3 : 2-recodings
and to 4 : 2-recodings.

Given a radix polynomial >_!", d; - 2/, the value obtained
by “chopping” off leading digits and inserting a radix point
immediately to the left of the “tail” is called the fraction value
at position j. Formally, the fraction value at position j is
denoted in terms of the digit string d,,,d,—1 - - - d¢ as follows:

fj(dm e d() = ||0.d]~,1dj72 e dl”

Jj—1
=> d2.
i=(

NIELSEN ET AL.: AN IEEE COMPLIANT FLOATING-POINT ADDER THAT CONFORMS WITH THE PIPELINED PACKET-FORWARDING... 39

The digit string d = d,,d,—1 - - - ds is said to have fraction
values in the range (c,d) if fi(d, ---d) € (¢,d) for all
je{l+1,...,m+ 1}. The width of the fraction range (c,d)
isd—c

Daumas and Matula [2] proved that if a borrow-save
encoded digit string B has fraction values in the range (c, d),
then P(B) has fraction values in the range (5—3.,9), and
N(B) has fraction values in the range (5,2+1). The
compound PN-recoding, P(N(B)), has fraction values in
the range (¢—1,9+1) C (—3,1). Successive recodings re-
duce the width of the fraction ranges; for example, if the
initial width is 2, then successive recodings reduce the
width to 13,11,.... This reduction in the width of the
fraction range is termed partial compression.

The partial compression obtained by P- and N-recoding
can be extended to 3:2-recodings. We summarize the partial
compression properties of 3:2-recodings and of 3:2- and 4:2-
redundant adders in the next claim; the proof appears in
Appendix B.

Claim 3. Let a®,a”,b",b~ denote k-bit strings (i.e.,
at =af |- -af). Let o, B, and ~y denote radix polynomials,
the coefficients of which are defined by: o; = af —a; + b,
Bi=a —a; —b;, and v =a} —a; +b —b;. Let x =

ppm(a*,a,b") and let y = mmp(at,a”,b7).

1. If the fraction range of « is in (c,d) (where
—1<¢<0<d<2), then the fraction range of x is
in (5—4.9).

2. If the fraction range of B is in (c,d) (where
—2<¢<0<d<1), then the fraction range of y is
in (5,9 +3)

3. If the fraction range of ~ is in (c,d) (where
—2<¢<0<d<2), then the fraction range of z =
mmp(z,b~) is in (¢ —1 44 1).

The implication of Claim 3 is that a 3:2-redundant adder

implemented by ppm-recoding has the same partial

compression properties that P-recoding has. Similarly, a

3 : 2-redundant adder implemented by mmp-recoding has

the same partial compression properties that N-recoding

has. Moreover, a 4 : 2-redundant adder of two borrow-save
encoded strings implemented by ppm-recoding followed by
mmp-recoding reduces the fraction range from (c,d) to

(§—3.9+9

3 ADDER DATAPATH FOR SMALL EXPONENT
DIFFERENCES

In this section, we describe the first two pipeline stages of
the addition algorithm for the case that the exponent
difference is small. We have adjusted the exact range of
exponent differences to be —1 <e; —ey < 4. This adjust-
ment simplifies significantly the algorithm for the case of a
large exponent difference at a modest cost for the case of a
small exponent difference.

The execution for the case that the exponent difference is
small is logically separated into two cases, depending on

whether the input carry-round packet makes a significant
contribution to the resulting sum: 1) When the carry-round
packet is not significant to the shift length, our principal
result is the following: Employing the standard operand
significand and the principal part of the packet format
operand, we can determine the post alignment normal-
ization shift to within one of two final positions in the first
cycle. 2) When the carry-round packet is significant to the
shift length, our algorithm yields the correct result,
comprising at most seven digits properly aligned by the
alternative logic case.

Notation. Let (s, €1, f1) denote the sign-bit, exponent, and
significand of the operand given in the IEEE Standard’s
format. Let (s2,e2, fy, fy,¢",¢”) denote the second
operand given in the packet-forwarding format; that is,
f3 . f5 denotes the positive and negative bit strings of the
principal part packet f and ¢, ¢~ denotes the positive
and negative bit strings of the carry-round packet c.

Description. Fig. 9 depicts the addition algorithm operating
under the assumption that —1 < e; — ey < 4. Since the
exponent difference is small, it suffices to consider only
the three LSBs of the exponents in order to compute the
difference e; — e;. This difference determines the align-
ment shift of f;. The extension of the small exponents
difference range from [-1,+1] to [—1,4] makes the
alignment shift somewhat costlier. However, the algo-
rithm for the large exponent difference is greatly
simplified, as discussed in Section 4. Note that only f;
is shifted, and that “traditional operand swapping” is not
performed. The reason for this is that the significand of
the second operand is represented as a borrow-save
number and has twice as many bits as f; and, hence,
restricting the alignment shift only to f; saves hardware.

While the significand f; is being aligned, the
redundant significand is negated, if necessary, and
recoded. Note, that negating a borrow-save number
amounts to swapping the positive and negative weight
vectors. The recoded redundant significand and the
aligned nonredundant significand are then added using
a 3-2 adder. The redundant significand has bits in
positions [—1 : 62] and the nonredundant significand has
bits in positions [—4 : 64]. (Note that we index position to
the left of the radix point with negative indices, and
positions to the right of the radix point are indexed with
positive indices.) The bits in positions [63 : 64] of the
nonredundant significand are passed through without
modification. The 3-2 adder adds the bits of the
nonredundant significand in positions [—4:62] with
the redundant significand. The output of the 3-2 adder
(which has bits in positions [—5 : 62]) is PN-recoded. The
output of the recoding (which has bits in positions
[—6 : 62]) is concatenated with the bits of the nonredun-
dant significand (bits in positions [63:64]) and the
resulting sum is denoted by g. The sum g is sent to
two destinations: 1) the registers between the two
pipeline stages and 2) a leading-zero anticipator.

Since we are dealing with the case of a small exponents
difference, the sum massive cancellation can cause the sum
(or difference) of the significands to be in the range (—1,1).

40

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000

& & 1 L fy 5, 5,
3 3 64 64%64 J{ %
-
Exponent
predict
PN-recoder
| pre-align
69: 65 |65
3-2 Add
70 L-70
PN-recoder
64
64
! 71 71
LZA ¢tg
k<63 k e
KK
-
Y
‘ reduced 4-2 Add ‘
h*lh- 7
71171 7
Y
Norm. 7 digit
—
Shift adjust
0 0
T
I UX
71 71
— ‘ final adjust
71 71 o1
] ; principal part packet

input to first rounding stage

Fig. 9. Adder datapath for —1 < e; — ey < 4.

The rounding unit assumes that a nonzero significand is in
the range [1,4] and, hence, a normalization shift may be
required.” A naive approach is to compress the sum to a
nonredundant representation, count the number of leading
zeros, and perform a left shift. We avoid this time-
consuming 2-1 addition as follows.

First, the 64 most-significant positive and negative bits of
the recoded borrow-save encoded sum are pairwise XORed.

2. The case of a zero sum is discussed later. The case of a denormal sum
is usually treated by using an extended exponent range so that even
significands of denormal results need to be properly normalized.

The resulting 64-bit binary string is fed to a leading-zeros
counter, LZ A [3]. Hence, the number of leading zeros in the
representation of the sum using borrow-save digits deter-
mines the shift amount. Note that the borrow-save encoding
of the sum might have a large number of leading insignificant
ones, i.e., a plus one followed by a string of minus ones or,
conversely, a minus one followed by a string of plus ones.
The existence of leading insignificant ones makes it hard to
estimate the range of the sum. The recodings have a key role
in restricting the adverse effect of leading insignificant ones
so that the shifted sum belongs to one of two possible

NIELSEN ET AL.: AN IEEE COMPLIANT FLOATING-POINT ADDER THAT CONFORMS WITH THE PIPELINED PACKET-FORWARDING... 41

binades, as formalized in Lemma 4. This completes the
description of the first clock cycle.

In the second clock cycle, we first add the carry-round
packet, denoted by c, to the sum, denoted by g. This is done
in two steps: First, the carry-round packet is negated, if
necessary, just as the redundant significand was. Then, a
redundant addition takes place. Since the redundant
significand is not shifted, the position of the carry-round
packet is not changed and, hence, the redundant addition
simply computes: h = g+ (—1)"%* . ¢. 276, Claim 5 shows
that this redundant addition can be performed by a
redundant adder of four digits such that this addition does
not generate a carry that changes the 67 most significant
digits of g.

After the carry-round packet has been added to the sum,
the normalization shift takes place. The leading-zeros
computation outputs two signals: “k < 63”"—a flag that
signals whether there is a nonzero digit among the 64 most-
significant digits of g; and “k”—the number of leading
zeros in g in case there is a nonzero digit among the 64
most-significant digits of g. The normalization is split into
two paths, depending on the signal k£ < 63. If £ < 63, then a
normalization shift takes place and the most-significant
digit of shifted sum is guaranteed to be nonzero. If k > 63,
then, out of the 71 digits of the sum, the 64 most-significant
digits are zeros. The remaining seven digits are normalized
and 64 zeros are padded to the right.

After the correct path has been selected according to the
signal k£ < 63, a final adjustment takes place. This adjust-
ment performs the following tasks: 1) detect the sign of the
sum and then negate and shift the sum accordingly so that
the principal part is within the range (1, 4), as prescribed by
Claim 6; and 2) adjust the two most significant digits of the
sum so that the representation complies with the packet-
forwarding format.

The proposed algorithm computes, in effect,

fi-207 4 (1) (fy+ 279

Let s denote the sign of this sum. The algorithm extracts s
from the most-significant negative bit that is fed to the final
adjust box. The sign-bit of a nonzero final sum equals s @ s;.
When the final sum equals zero, the sign bit is determined
by the rounding-mode if the operands are not both zeros or
by the signs of the operands (if the operands are both zeros).
Therefore, an additional signal is generated during the
second cycle to indicate whether the final sum is zero.
The exponent packet of a nonzero sum is defined by:

€2
e =
€2

where adjust denotes the shift amount that is done by the
final adjust box. Namely, adjust is either 1 or 2, depending
on the s. If k > 64, an additional left shift is carried out by
the seven digit adjust box. This shift amount is denoted by
adjust’. In case the sum equals zero, the exponent needs to
be set to eyin.

This completes the description of the second clock cycle.
The sign-bit, exponent, and principal part packet are ready
to be forwarded, as well as input to the rounding unit, as
described in [8].

— (k—6) — adjust 1 <
(k—6) —ady if k<63
— (64 — 6) — adjust’ — adjust otherwise,

3.1 Correctness

The following lemma demonstrates the advantage of using
carry recodings for partial compression. The lemma shows
that the recodings nearly eliminate the range ambiguity
caused by leading insignificant ones (and minus ones) in
the borrow-save encoding of the sum. This lemma is
instrumental in reducing the problem of computing the
normalization shift amount to a problem of computing the
number of leading zeros in a binary string.

Lemma 4. Suppose the sum g is nonzero and let (0%, o, t) denote
the digit string representing the recoded sum, in which there
are k leading zeros followed by a nonzero digit o € {—1,1}
and a digit string t € {—1,0,1""*"' If k<63, then o.t
(where the dot between o and t is a radix point) is in the range

(%.2) for o =1and (—%,—-2) for o = —1.

Proof. The borrow-save number f, = f5
range (—1,1), is PN-recoded. Therefore, the fraction
range of the redundant significand that is input to the 3-2
adder is (—2,3).
significand is [0, 1). Therefore the fraction range of the
output of the 3-2 adder is (—£,%). The output of the 3-2
adder is PN-recoded and, hence, the output of the

recoding, g[—6 : 62] has fraction range (-2, 5.

The sum g also has two bits g*[63 : 64] that originate
from the nonredundant significand. We assume that
k < 63, therefore, the contribution of ¢*[63:64] to the
fraction range in positions [—6 : 56] is nonnegative and
less than 27 (k < 63 implies that the position of \sigma,
the leftmost nonzero digit in g, is in the range [—6 : 56]).
Thus, the fraction range of the sum g in positions [—6:

56] is (—25, % +37)- Leta=—2 and b =%+ 4;.

Consider the borrow save number (0, 0,t). If 0 =1,

— f5, with fraction

The fraction range of the nonredundant

then 0.1t € (a,b) and, thus, 1.t € (1 +a,1+b) N (2a,2b).
This implies that 1.z € (35,2). Similarly, we deduce
Lie (-2, -5 0

The sum g that is input to the second pipeline stage
consists of 71 borrow-save digits, seven of which are to the
left of the radix point and 64 of which are to the right of the
radix point. As mentioned above, the two least significant
digits (i.e., g[63:64]) originate uninterrupted from the
aligned nonredundant significand and, therefore, consist
of two (positive) bits.

The following claim shows that the (possibly negated)
carry-round packet can be added with the four least
significant digits of the sum g without generating a carry.

Claim 5. Let g[61 : 64] denote the four least-significant borrow-
save digits of the redundant sum that are input to the second
pipeline stage and let c[63 : 62] denote the two borrow-save
digits of the carry round packet. Then,

3
—12<) g64—i]- 2" +4-c[62] +2-c[63] < 11.
i=0

Proof. Define: A = 2g[63] + g[64], B = 2g[61] + g[62], and
C = 2c[62] + c[63]. Since A originates from the nonre-

42

dundant significand f;, it follows that 0 < A < 3. The
PN-recoding performed just before the end of the first
clock cycle, ensures that —2 < B < 1. (Note that this
recoding starts at position 62.) Finally, by definition,

—2<C<2
Hence, —-12<A+4B-+2C <11 and the claim
follows. O

As stated above, the sum g has seven digits to the left of
the radix point and 64 digits to the right of the radix point.
Let g be of the form (0%,0,t), as in Lemma 4. The
normalization shift shifts h by k positions to the left and
positions the radix point between ¢ and ¢. The combined
effect of the shift and the repositioning of the radix point
amounts to scaling the fraction by 2¢76. Thus, the value
output by the normalization shift is h = (g + ¢ - 27%3) . 2¢76,
The next claim shows that, even after the addition of the
carry round packet, the normalized sum belongs to a range
of two binades.

Claim 6. If k < 63, then normalized sum h satisfies:

I. Ifo=1,thenhe (},1).
2. Ifo=-1thenhe (-2,—3).

Proof. If 0 = 1, then Lemma 4 implies that

9 29 k—69
€<32,32)+c-2 .

Similarly, if o = —1, then

23 35 -
he (-2 2) fc.ob0,
< (16° 64) e

Our assumption that k& < 63 implies that

1

. 2]&7769 < .

C <%

and the claim follows. a

Claim 6 implies that if the partially normalized fraction is
positive, then, by a shift of two positions to the left, the
normalized sum is shifted to the range (1,4). If the sum is
negative, then, by a negation and a shift by one position to
the left, the normalized sum is shifted to the range (1,4).
Thus, in the final adjustment stage, depending on the sign,
we either negate the bits of the redundant significand and
do a hardwired left shift or perform a hardwired left shift
by two positions. Note that the sign of the sum can be taken
directly from the negative MSB before the final adjust and
that the positive MSB can be ignored. The reason is that the
leading-zeros computation and subsequent normalization
shift guarantee that the most-significant digit is nonzero.

4 ADDER DATAPATH FOR LARGE EXPONENT
DIFFERENCES

In this section, we describe the first two pipeline stages of
the addition algorithm for the case that the exponent
difference is large. This case is characterized by a large
alignment shift and a small normalization shift (at most one
position). In our algorithm, the alignment shift takes place
during the first cycle, although the carry-round packet is

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000
input only at the beginning of the second cycle. Only the
principal part (or standard format input) needs to be
aligned by a variable length right shift. The late arriving
carry-round packet can be directed to one of just two
locations to complete the addition. A variable shifting of the
carry-round packet is avoided by the choice of the threshold
that separates between the case of a small exponent
difference and a large exponent difference. Thus, the sign
of the exponent difference e; — e; determines the location of
the late arriving carry-round packet.

4.1 Description

Fig. 10 depicts the addition algorithm operating under the
assumption that e; —ey; > 5 or e; —e; > 2. The first cycle
begins with a full subtraction of the exponents. The
magnitude of the difference e; — ey is limited by 66 since
alignment shifts of 66 positions or more yield the same
rounded result. Meanwhile, the redundant significand is
negated, if necessary, and PN-recoded. The sign of the
exponent difference controls which significand is aligned.
Note that the output of the Swap box is a borrow-save
number and that encoding the nonredundant significand as
a borrow-save number is done by putting zeros in the
negative vector. The significand with the larger exponent is
sent to the second cycle. The significand with the smaller
exponent is sent to two boxes: 1) The high order alignment
box is a shifter capable of shifting a 66-digit borrow-save
number by 2 to 66 positions to the right. 2) The low order
generator computes the bit string 004-Fermag . 1Eepmag and
performs a bitwise AND between this string and the 64
least-significant digits of the significand (note that the P.N-
recoding introduces an additional digit to the left of the
radix point). This produces the bits of the significand that
would be shifted beyond bit position 65 and participate
only in the generation of the sticky digit in the rounder.
Hence, justifying these bits to the right does not change the
sticky-digit. The advantage of this approach is that the
carry-round packet needs to be placed only in one of two
positions, depending on the sign of e; — ey, as depicted in
Fig. 11. This completes the description of the first clock
cycle.

At the beginning of the second cycle, the high-order part
of the shifted operand and the nonshifted operand are
added by a 4-2 adder which outputs the sum g. Meanwhile,
the carry-round packet, which is input at the beginning of
the second clock cycle, is negated if necessary, just as the
redundant significand was. The sign of the exponent
difference determines whether the carry-round packet is
added to the high order part or to the low order part, as
depicted in Fig. 11. If e; > ey, then the redundant fraction f;
was shifted and the carry-round packet is added in fixed
positions 128 and 129. If e; > e;, then the nonredundant
fraction f; was shifted and the carry-round packet is added
in fixed positions 62 and 63. Since we have separated the
computation into high and low order parts, care should be
taken so that the addition of the carry-round packet
modifies only one part. In particular, when the carry-round
packet is added to the low order part, a ripple effect is not
allowed. Claims 7 and 8 show that the addition of the carry-
round packet can be performed by constant width 4-2
adders.

NIELSEN ET AL.: AN IEEE COMPLIANT FLOATING-POINT ADDER THAT CONFORMS WITH THE PIPELINED PACKET-FORWARDING... 43

¢) f] f2+f2. 5,8,
is 15 64 M/i/m(/t u
%
Exponent
o
A 65 Y65
Expsign Swap
i |
Expmag hlgh order Expmag low order
Alignment generator
68 68 68 168
cte
2 { {2
2
g g 0 i ¢ 2 ¢ 0
Al _ "o
69)69 @ Expsign w ' Expsign
‘ reduced 4-2 Add ‘ ‘ reduced 4-2 Add ‘
69 69
‘?ﬁf’;ﬁi’ final adjust
132} i3 64

, ™ principal part packet
Y

input to first rounding stage

Fig. 10. Adder datapath for e; —e; > 2 ore; —es > 5.

After the carry-round packet is added either to the high
order part or to the low order part, the following
adjustment takes place. (A) The sign of the redundant sign
is negative iff s; # sy and ey > e;. The reason is that, in this
case, f> is negated even though it dominates the sum. Thus,
when the above condition holds, the redundant sum must
be negated. (B) The large exponent difference implies that
the magnitude of the redundant sum is in the range (1,43).
Therefore, if an effective addition took place (e.g., s = s2),
then a right shift by one position might be required to bring
the redundant sum to the range [1,4). Note that it is not
necessary to find the exact value of the redundant sum
(which would be just as slow as compressing it) and that it
suffices to find out whether the redundant sum is greater
than 24 with an error of 1. This can be determined by the
digits whose weight is at least 1 and there are only a
constant number of such bits. Similarly, if an effective
subtraction took place (e.g., s1 # s2), then a left shift by one
position might be required to bring the redundant sum to
the range [1,4). (C) Finally, an adjustment of the digits to

the left of the radix point guarantees that the representation
complies with the packet-forwarding format.

The sign-bit of the sum is determined by the sign of the
exponent difference, denoted by Expsign. If e; > e, then the
sign bit equals s; and if e; > e, then the sign-bit equals s5.
The exponent of the sum equals max{e;, ea} + adjust, where
adjust denotes the shift that is performed by the final
adjustment.

This completes the description of the second clock cycle.
The sign-bit, exponent, and principal part packet are ready
to be forwarded as well as input to the rounding unit, as
described in [8].

4.2 Correctness

The following claim shows that a 3-digit adder suffices for
adding the carry-round packet with the low-order part
when ¢e; > es.

Claim 7. Let cgoce3 denote the borrow-save digits of the carry-
round packet. Consider the borrow-save number f =
b, b bbb, - - - b, obtained by possibly negating the redun-
dant significand f, and performing a PN-recoding. Then, the
sum of by b, and ceaces can be represented by three digits,
namely,

44

high order part
2-101 2 3 -

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1,

- -

- 60 61 62 63 64 6566 67 68 -

57
b8
b

@7 }%f? @9 ,%71 0o 0 0
57| B Bo|%o) 0 0 0

(2]] -

- “ko ‘%l ‘%2 ‘%1 ‘

high order part
2-101 2 3 -

- ——

- 60 61 62 63 64 65|66 67 68 -

low order part

————————— - 128129

FF
%2 |%3

%2 |%3

T
b0% | o

-0 0 0 0|%|%| 0

low order part

————————— - 128129

I
52 | %3

T [(57
by | b |y |b

FI5F
B |8y | Bo| o1 [2| 0

51, % |7

57 1B | B0 | B0 551 |2 0

“760 ‘061 ‘%2 ‘%3‘

high order part
2-101 2 3 -

(b)

-~ -

PACACACACAES

byl by by

0

high order part

AAGAGAGars
By by | By | by | b5 | B

low order part

JANUARY 2000

- 60 61 62 63 64 6566 67 68 - - 128129
G [%
%2|%
CARADS
0| B2 | %2
: “Sx |‘%9“%a‘%1 “/Isz |‘k?‘ 00 0 00 00 0
()
-~ low order part
- 60 61 62 63 64 6566 67 68 - - 128129
o, [k
G2 |%3
G2 |%3
bo | B | B2
0| B2 | %2
‘ 1 ‘ “1‘ “2‘ - “5‘8 |‘§9 ‘”60 ‘%/ |”62 ‘”63‘
(d)

Fig. 11. (a) alignment when e; = es + 5; (b) alignment when e; > e, + 66; (c) alignment when e; = e; + 2; (d) alignment when ey > e; + 66.

77§4-b81 +2‘b2;2+2'062+063 <T.
Proof. From [2], it follows that —2 < 2- b, + b, < 1. The
carry-round packet is in the range [—2,2] and the claim
follows. u

The following claim shows that a 4-digit adder suffices
for adding the carry-round packet with the high-order part
when e; > e;. The proof relies on the compression proper-
ties of the 4-2 adder that adds the significands.

Claim 8. Let cgoce3 denote the borrow-save digits of the carry-
round packet. Comnsider the borrow-save number g =
9-39-29-190-9192 - - - ge5 computed by the 4-2 adder in
Fig. 10. If the adder is implemented by cascading two 3-2
adders (i.e., ppm cells followed by mmyp cells), then the sum of

960961962963 and ceaces can be represented by four digits,

namely,

—15<8-gso+4-gs1 +2-gs2+ ge3 + 2 - ce2 + g3 < 15.

Proof. The fraction range of the adder’s input is
[-3,13) =[0,1) + (—2,3), because the redundant signifi-
cand is PN-recoded. Therefore, the fraction range of the
output of the adder is [~ 1§, %). The carry-round packet is

in the range [—2,2] and, hence, the fraction range of

0.00cga¢3 is [—4,4]- The sum of these fraction ranges is

[13

—13,1) and the claim follows. O

NIELSEN ET AL.: AN IEEE COMPLIANT FLOATING-POINT ADDER THAT CONFORMS WITH THE PIPELINED PACKET-FORWARDING... 45

5 SuMMARY AND CONCLUSION

An addition algorithm conforming with the packet-for-
warding pipeline paradigm is presented. The adder accepts
one operand in the standard format and the second operand
in a packet-forwarding floating-point format [8]. Note that a
standard format operand can be trivially translated to
conform with the packet-forwarding format and, therefore,
the assumption on the second operand does not restrict
inputing two standard format operands. The sum is output
in the packet-forwarding floating-point format starting at
the end of the second cycle, as well as in the standard
format at the end of the fourth cycle. This algorithm
rearranges and avoids non essential 2:1-addition steps of
the traditional floating-point addition implementations. In
fact, the processing of a forwarded result that is output in
the packet-forwarding format does not contain a 2:1-
addition of the length of the significand; the only
nonredundant addition is the exponent subtraction. This
enables outputing of a nearly complete significand termed
the principal part packet at the end of the second cycle. The
rounding, which takes place during the third and fourth
cycles [8], produces the carry-round packet at the end of the
third cycle and the standard format sum at the end of the
fourth cycle. The value encoded by the packet-forwarding
floating-point format output is equivalent to the standard
IEEE 754 rounded output. By these means, only one 2:1-
addition is performed and it is deferred to the latter portion
of the rounding phase, where it contributes no delay to the
data forwarding process. All the additions in the first two
cycles are 4:2- and 3:2-redundant additions.

Note that the proposed addition algorithm can fuse a
sequence of dependent additions without intermediate 2:1-
additions. Only the final sum is subjected to a 2:1-addition
for retiring to a register. Nevertheless, every addition is
subject to proper IEEE rounding and, therefore, the final
sum agrees with the IEEE standard sum where every
intermediate result should be properly rounded.

The algorithm employs P- and N-recodings for obtain-
ing partial compression of the redundant numbers [2]. The
cost of P-and N-recodings is roughly equivalent to that of
passing every borrow-save digit through one half-adder.
Most of the recodings do not lie on the critical paths. The
partial compression obtained by recoding is used in several
places in the algorithm, among them: avoiding full
compression before counting leading zeros and simplifying
the addition of the late arriving carry-round packet.

The algorithm uses a different threshold for distinguish-
ing between the cases of a small and a large exponent
difference. This modification introduces a small increase in
the cost of the datapath for the small exponent difference,
but enables us to avoid shifting the carry-round packet by a
variable amount in the large exponent difference datapath.
Thus, the late arriving carry-round packet in the large
exponent difference datapath is directed without a variable
shift to one of two locations depending on the sign of the
exponent difference.

The proposed design demonstrates the feasibility of a
four stage pipelined addition algorithm complying with the
packet-forwarding paradigm in which the depth of each
pipeline stage is roughly 15 logic levels. An optimization of

the design should even further reduce the depth of the
pipeline stages.

Further work relating to complying with other aspects of
the IEEE standard is still required. Our presentation does
not address IEEE exception detection and handling. The
forwarding of the results may need to be disabled when
exceptions, such as overflow and underflow, occur. One
way to deal with exceptions is to compute early signals
warning that an exception might occur. Such a warning
signal can be used to disable the forwarding and recourse to
the standard result.

APPENDIX A
THE COMPUTATION OF THE CARRY-ROUND PACKET

In this appendix, we outline how the carry-round packet is
computed during the third pipeline stage. A more detailed
and optimized description appears in [8].

The input to the third pipeline stage is (s,¢/, f,),
where the f™=1b.b7b5 -- by, and f~ =byby -+ by, are
bit strings that represent the significand before rounding.
It is guaranteed that f* — f~ € (1,4). The principal part,
which is output at the end of the second pipeline stage,
consists of these significand strings chopped after position
62. This means that the algorithm has committed to a
value represented by the significand’s digits in positions
—1 to 62, and the role of the carry-round packet is to
correct this value to take into account the rounding
decision. The carry-round packet is limited to values in
the set {—2702 —2-63 (2763 2-62}

The computation of the carry-round packet is based on
computing the signed-sticky digit of a borrow-save encoded
string, defined as follows:

1 if Y ,dp-27F <0
signed_stk(didi1---dj) = 0 if > _. dy- 27k =0
1 if Y i dp-277>0.

Matula and Nielsen suggest a fast circuit for computing the
signed-sticky digit [8].

Let b; = b — b; . The range of f* — f~ can be partitioned
into (1,2), {2}, and (2,4) as follows:

signed,stk(bobl s b130) =—-1= er — f7 S (1, 2)
signed_stk(boby - - - bigo) = 0= f" — f~ =2
signed_stk(b0b1 s blgg) =1= f+ — f7 € (2,4)

This partitioning into ranges determines which digits and
signed-sticky digits are used for computing the carry-round
packet. Suppose that the rounding mode and the sign bit s
are used to determine one of three rounding modes:
truncate, round up, or round to nearest even. We consider
three cases:

1. If ff—f €(1,2), then the rounding decision is
determined by bgs, bes, and signed_stk(bes - - - biso).
The rounding decision is to add a value re
{—27%3,0,2753} to 1by.b;y---bgs. Since the principal
part has already been output, the carry-round packet
equals bgz + 7.

46

IEEE TRANSACTIONS ON COMPUTERS, VOL. 49, NO. 1, JANUARY 2000

€ {07 _%} + %(Cv d)

Fig. 12. Schematic proof of the compression property of ppm-recodings.

2t []
- 0 +

+ z
ol _a= |
)ppm‘l
a+
=
ool bt
0 2t

mmp~
pom(a®t, e, bT) | T
| _
c{0,5} + 0 =
0 ppm(at,a,b%) |+
0 _
1
€{0,5} +_OH + 00 =
ppm !
at
pe
6{07%}4’{077%77%} + b+
00 b-
€ 0,3} +{0, 1, —3} + 5(c.d)
Fig. 13. Schematic proof of the compression property of 4-2 addition.
2. If ff — f~ =2, then the carry-round packet equals APPENDIX B

Zero.
3. If ft—f €(2,4), then the rounding decision is
determined by b62, b63, and signed-stk(bm s b13()).
The rounding decision is to add a value re
{—2762,0,252} to 1bg.b; ---bge. Since the principal
part has already been output, the carry-round packet
equals 7.
Matula and Nielsen suggest computing in parallel the signed-
sticky digits signed_stk(by - - - bgs) and signed_stk(bgs - - - bigo)-
These signed-sticky digits together with be2, be3, bgs, s and
the rounding-mode are used to compute carry-round
packet [8].

PARTIAL RECODING—PROOF OF CLAIM 3

In this appendix, we prove Claim 3. The proof technique is
based on the proof of the lemma of Daumas and Matula [2]
on the partial compression of P- and N-recodings. The
proof is presented in a schematic form to avoid the indices
that are needed in a formal proof, but can be easily
transformed into a formal proof.

Proof of part 1. We denote = = ppm(at,a,b") by two bit
strings =+ and z~. Our goal is to prove that the fraction
range of (z*,27) is in (§—3,5).

Fig. 12 depicts a schematic proof of the partial
compression of ppm-recoding. We consider a 2 x ¢ array
consisting of ,_; - - - zp and put a radix point to the left of
it. In the first line, we pluck the most-significant negative
bit from the 2 x ¢ bit array that consists of 2™ and ™. The

NIELSEN ET AL.: AN IEEE COMPLIANT FLOATING-POINT ADDER THAT CONFORMS WITH THE PIPELINED PACKET-FORWARDING... 47

contribution of this negative bit to the fraction range is
either 0 or — 5. We then apply a reverse ppm-recoding to
the remammg 2 x £ bit array. Note that we have a
leading zero between the radix point and the most
significant digit of the 3 x (¢ — 1) bit array and, thus, the
fraction range of the 3 x (¢ — 1) bit array is (£,4), and the
proof follows. 0

Proof of part 2. The proof of the partial compression
property of mmp-recoding follows the same lines, only
we pluck out the positive most significant bit and apply a
reverse mmp-recoding. O

Proof of part 3. We denote z = mmp(z,b”) by two bit
strings z* and z~. Our goal is to prove that the fraction
range of (z*,27) is in (§—3,943).

Fig. 13 depicts a schematic proof of part 3. We
consider a 2 x ¢ array consisting of z,_; --- 2y and put a
radix point to the left of it. In the first line, we pluck the
most-significant positive bit from the 2 x ¢ bit array that
consists of z" and z~. The contribution of this positive bit
to the fraction range is either 0 or 1. We then apply a
reverse mmp-recoding to the remaining 2 x ¢ bit array.
The reverse mmp-recoding yields a 3 x ¢ —1 bit array
that consists of z = ppm(a™,a™,b") and b~. In the third
line, we pluck the most-significant negative bits from the
3 x ¢ — 1bit array. The contribution of these two negative
bits to the fraction range is either 0,—1 or —1. In the
fourth line, we apply a reverse ppm- recodmg to
ppm(a®,a”,b"), which yields the three bit strings: a™,
a~,and b". Note that we have two leading zeros between
the radix point and the most significant digit of the 4 x
(¢ — 2) bit array and, thus, the fraction range of the 4 x

(¢ — 2) bit array is (¢,4), and the proof follows. O

ACKNOWLEDGMENTS

A preliminary version of this work appeared as “Pipelined
Packet-Forwarding Floating Point: II. An Adder” in the
Proceedings of the 13th IEEE Symposium on Computer
Arithmetic, Asilomar, California, 6-9 July 1997, pp. 148-155.
David W. Matula and C.N. Lyu’s work was supported in
part by a grant from Cyrix Corporation and by the Texas
Advanced Technology Program Grant 003613013. Guy
Even’s work was supported in part by the North Atlantic
Treaty Organization under a grant awarded in 1996 and by
Intel Israel LTD under a grant awarded in 1997.

REFERENCES

[1] “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE
Standard 754-1985, New York, IEEE, Aug. 1985.

[2] M. Daumas and D.W. Matula, “Recoders for Partial Compression
and Rounding,” Technical Report RR97-01, Ecole Normale Super-
ieure de Lyon, LIP, available at http://www.ens-lyon. fr/LIP.

[3] L. Dadda, V. Piuri, and F. Salice, “Leading Zero Detectors,” Proc.
Second Int’l Conf. Massively Parallel Computing Systems, pp. 409-416,
Ischia, Italy, May 1996.

[4]].Duprat, Y. Herreros, and J.-M. Muller, “Some Results about On-
Line Computation of Functions,” Proc. Ninth IEEE Symp. Computer
Arithmetic, pp. 112-118, Sept. 1989.

[S] M.P. Farmwald, “On the Design of High-Performance Digital
Arithmetic Units,” PhD thesis, Stanford Univ., Aug. 1981.

[6] A. Guyot, B. Hochet, and J.-M. Muller, “JANUS, an On-Line
Multiplier /Divider for Manipulating Large Numbers,” Proc. Ninth
IEEE Symp. Computer Arithmetic, pp. 106-111, Sept. 1989.

[71 C.-N. Lyu, “Micro-Architecture of a Pipelined Floating-Point
Execution Unit,” PhD thesis, Southern Methodist Univ., Dallas,
Tex., Dec. 1995.

[8] D.W. Matula and A.M. Nielsen, “Pipelined Packet-Forwarding
Floating Point: I. Foundations and a Rounder,” Proc. 13th IEEE
Symp. Computer Arithmetic, pp. 140-147, Asilomar, Calif., July 1997.

[9] Microprocessor Report, various issues, 1994-1997.

[10] AM. Nielsen, “Number Systems and Digital Serial Arithmetic,”
PhD thesis, Odense Univ., Denmark, Aug. 1997.

[11] S.F.Oberman, H. Al-Twaijry, and M.J. Flynn, “The SNAP Project:
Design of Floating Point Arithmetic Units,” Proc. 13th IEEE Symp.
Computer Arithmetic, pp. 156-165, Asilomar, Calif., July 1997.

[12] N.T. Quach and M.J. Flynn, “An Improved Floating Point
Addition Algorithm,” Technical Report CSL-TR-90-442, Stanford
Univ., June 1990. (available at http://umunhum.stanford.edu/
main. html).

[13] N.T. Quach and M.J. Flynn, “Design and Implementation of the
SNAP Floating-Point Adder,” Technical Report CSL-TR-91-501,
Stanford Univ., Dec. 1991. (available at http://umunhum.stan-
ford.edu/main. html).

Asger Munk Nielsen received the master's
degree in computer engineering and the PhD
degree in 1997, both from Odense University,
Denmark. He is now with MIPS Technologies,
Copenhagen, Denmark. This work was per-
formed during his studies and started during a
visit at Southern Methodist University and Cyrix
Corporation in Dallas, Texas, in 1996. The title of
his PhD dissertation is “Number Systems and

' Digit Serial Arithmetic.” The dissertation deals
with representatlons of numbers and arithmetic on redundant and
complex numbers. His research interests are computer arithmetic and
number representations.

David W. Matula received the PhD degree in
engineering from the University of California,
Berkeley, in 1966. He is currently a professor in
the Computer Science and Engineering Depart-
ment at Southern Methodist University, Dallas,
Texas. He is the author of more than 90 papers
on computer arithmetic and graph algorithms
and holds 13 patents on computer arithmetic
3 and cellular communication systems. He was

the co-editor of two special issues of the IEEE
Transactions on Computers on computer arithmetic appearing in 1977
and 1992.

C.N. Lyu received the PhD degree in computer science and engineering
from Southern Methodist University, Dallas, Texas, in 1995. His
dissertation dealt with designing floating-point units. Dr. Lyu designed
arithmetic units for LSI Logic from 1990-1993 and HAL Computers from
1998-1999. He is currently with Nisham Systems, San Jose, California.

Guy Even received the BSc degree in mathe-
matics and computer science from the Hebrew
University in Jerusalem in 1988, and the MSc
and DSc degrees in computer science from the
Technion, Haifa, Israel, in 1991 and 1994,
respectively. During 1995-1997, he was a
postdoctoral fellow in the Chair of Professor
Wolfgang Paul at the University of the Sarland at
Saarbrueken, Germany. Since 1997, he has
been a faculty member in the Electrical En-
gineering-Systems Department at Tel-Aviv University, Israel. His current
areas of research interest include computer arithmetic and the design of
IEEE compliant floating-point units, approximation algorithms for NP-
complete problems related to VLSI design, and the design of systolic
arrays.

