
Advanced computer ArithmeticEE 486 Feb 4, 2003Winter 02-03

Prof. M. J. FlynnM. J. Flynn 1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 9: Multiply

M. J. Flynn

Computer Architecture & Arithmetic Group 2 Stanford University

Multiply

• Generating the partial products (pp’s)
– Booth encoding

– Direct sub multipliers

• Reducing (or assimilating) the pp’s
– Arrays (2D)

– Higher order arrays

– Trees (3D)

• Iteration on the pp tree (or array)

Computer Architecture & Arithmetic Group 3 Stanford University

Truncated multiply

• The multiplication
operation forms a 2n
bit product, but only
needs to store an n bit
result.

• Can truncate low order
bits, if guard lsb with
g=[log2 n] bits plus k

• k=1/2 h’ (the tree
height at lsb of g) g

h’

Computer Architecture & Arithmetic Group 4 Stanford University

IEEE multiply and truncation

• In IEEE need full tree, but low order bits
need only a zero detect for each bit.

• Then sticky bit, s= ~(Σzi) for each of the
low order bits

• If we truncate (X xY)t then it should be that
(X xY) t = (Y xX)t if non Booth is used then
this is true for all X, Y since we have the
same number of 1’s in each column

Computer Architecture & Arithmetic Group 5 Stanford University

Truncated Booth

• This may not provide (X xY)t = (Y xX)t

• Consider Booth:2X – X should = X

• If X=00010(1)t

• 2X=00101

• C(Xt) =11110 or C(X)=111010,

• Not the same results

Computer Architecture & Arithmetic Group 6 Stanford University

Reducing the pp’s

• The basic unit of reduction is the CSA
(carry save adder)

• This is simply a binary full adder that takes
3 inputs of the same weight and provides 2
outputs, sum and carry. It’ s also called a
(3,2) counter.

• In adding 3 numbers X,Y and Z we reduce
the 3 operand to 2 and then do a single CPA

Advanced computer ArithmeticEE 486 Feb 4, 2003Winter 02-03

Prof. M. J. FlynnM. J. Flynn 2

Computer Architecture & Arithmetic Group 7 Stanford University

CSAs

• By using CSAs we
reduce the 3 input
operands to 2 in 2 gate
delays, then do a CPA

• Can extend to n
operands

• In case of multiply
these operands are the
pp’s

Computer Architecture & Arithmetic Group 8 Stanford University

Compressors and Counters

• [4:2] compressor

o

o

(3,2) counter

o

oo
o

o

o

o

oo

o o

has delay
 2x (3,2)
counters

Computer Architecture & Arithmetic Group 9 Stanford University

Multiplier topology

• Refers to the way bit positions in the pp
reduction are interconnected.

• Can be either arrays or trees
• Two important measures of a topology are

1) the minimum number of wires needed to
interconnect the counters within a single bit
position, and 2) the number of counter
delays required to reduce the pp’s to the 2
inputs to the CPA.

Computer Architecture & Arithmetic Group 10 Stanford University

Using CSAs in linear arrays

Computer Architecture & Arithmetic Group 11 Stanford University

Linear arrays

• In a simple array each cell is a CSA

• To add n operands takes n-2 CSA levels plus a
final CPA or 2(n-2) + CPA gate delays.

• While relative slow linear arrays use a minimum
width of wiring channel.

• Number of wiring tracks/bit channel is w.

• w is determined by the topology. Some circuit
family may require 2w to implement the design.

Computer Architecture & Arithmetic Group 12 Stanford University

Wires vs. gates

• Arrays minimize w at the expense of gate
delays.

• Wiring channel can determine the column
bit pitch, forcing larger designs with more
overall wire.

• Some circuit techniques use 2 wires/signal
(eg dual rail domino), while fast they can
only be used when w can accommodate it.

Advanced computer ArithmeticEE 486 Feb 4, 2003Winter 02-03

Prof. M. J. FlynnM. J. Flynn 3

Computer Architecture & Arithmetic Group 13 Stanford University

Simple array, w=3

1 2 3

Computer Architecture & Arithmetic Group 14 Stanford University

Double arrays

• A single linear arrays has w=3 and h=n-2.

• A double array create 2 sub arrays of
h=(n-2)/2; provides 4 pp’s to be summed by
a [4:2] and then a CPA.

• The double array has w=5

Computer Architecture & Arithmetic Group 15 Stanford University

Double Array, w=5

Linear
array

W=3

4:2

4 5

Computer Architecture & Arithmetic Group 16 Stanford University

Higher order arrays (Al-Twaijry’94)

• More than 2 sub arrays summed by counters
or compressors.

• Optimum configurations arrange unequal
length linear sub arrays into a string of [4:2]
compressors so that the shortest sub array
has the longest compressor chain and all
paths are balanced.

Computer Architecture & Arithmetic Group 17 Stanford University

Structure of higher order array

Computer Architecture & Arithmetic Group 18 Stanford University

Higher order array, w=5

• As in the case of the double array a linear
(or simple) array with w =3 is bypassed
with the 2 outputs of a [4:2] compressor.

• Gives a total w =5.

• So, by construction, all arrays should have
no more than w = 5.

Advanced computer ArithmeticEE 486 Feb 4, 2003Winter 02-03

Prof. M. J. FlynnM. J. Flynn 4

Computer Architecture & Arithmetic Group 19 Stanford University

Arrays, width and depth in (3,2)
levels

O (2 sqrt(n))5higher order

((n-4)/2) + 2 = n/25double

n-23simple

d, # of (3,2)countersw, lines
per bit

Array type

Computer Architecture & Arithmetic Group 20 Stanford University

Trees

• Trees differ from arrays in that they
optimize depth (the number of counter
delays at the expense of width,w.

• The width of a tree (number of wires per bit
position) is a function of n, the height of the
pp reduction array.

• Trees are either regular whose width is a
known function of n or irregular where w is
determined by design layout.

Computer Architecture & Arithmetic Group 21 Stanford University

Types of trees

• Wallace tree: a fast irregular tree using (3,2)
counters; w depends on layout. Variations
use (m,n) counters

• Binary tree: regular tree using [4:2]s, w is
predictable

• ZM trees: regular tree with w=5 (becomes a
higher order array)

• OS (overturned staircase) trees: regular, can
achieve Wallace tree delay.

Computer Architecture & Arithmetic Group 22 Stanford University

Wallace (’64) big, old, trees

• The basic tree is the
Wallace tree. It uses
the 3,2 counter to
reduce n operands to 2

• Requires about
[log3/2n/2] levels

• No concern about w

o

o

3,2 counter

o

oo

Computer Architecture & Arithmetic Group 23 Stanford University

Wallace tree for 8x8 using (3,2)

Computer Architecture & Arithmetic Group 24 Stanford University

Other counters can be used

• Dadda- Stenzel
counters have the form
(CR-1,…,C0,d) each Ci
is the height of the ith
column and d is the
number of output bits

• (5,5,4) and (7,3) are
the usual alternatives
to (3,2)

Advanced computer ArithmeticEE 486 Feb 4, 2003Winter 02-03

Prof. M. J. FlynnM. J. Flynn 5

Computer Architecture & Arithmetic Group 25 Stanford University

A 12x12 using 4x4 for pp generation
and (5,5,4) counters for reduction

Computer Architecture & Arithmetic Group 26 Stanford University

Counter considerations

• A ROM can be used to implement any
counter: (Σci)x d, e.g. (2,2,2,2,2,6)

• Popular counters usually maximize the
output states, so that d, almost a power of 2

• Counters are usually realized from (3,2)’s
perhaps somewhat reconfigured.

• Can also have direct realizations using
custom logic, PLAs tables, etc.

Computer Architecture & Arithmetic Group 27 Stanford University

Compressors and counters

• Wallace trees are irregular in structure and are
difficult to layout as their wiring requirements are
determined only at layout

• A more regular tree is a binary tree. This is
implemented using [4:2] compressors, this is a
form of (5,3) counter. It can be implemented using
2 (3,2) counters, although it’s possible to
reconfigure these to create a [4:2] delay faster than
2 x (3,2) delays

Computer Architecture & Arithmetic Group 28 Stanford University

Computer Architecture & Arithmetic Group 29 Stanford University

Binary tree(Weinberger ’81): 16
pp’s showing 1 bit

Computer Architecture & Arithmetic Group 30 Stanford University

Binary trees

• Delay in CSA levels is 2([log2n] –1)

• Wire channel size seems to be n (the
number of pp’s), but it can be improved by
bringing in each pp at an optimum point on
the bit position of the tree.

• w= 2[log2 n]

Advanced computer ArithmeticEE 486 Feb 4, 2003Winter 02-03

Prof. M. J. FlynnM. J. Flynn 6

Computer Architecture & Arithmetic Group 31 Stanford University

8b reduction

w=6

16b
reduction

w=8

Computer Architecture & Arithmetic Group 32 Stanford University

Z M and OS trees

• Other regular trees are possible using (3,2)
or other counters

• The ZM (Zuras-McAllister ‘86) tree is also
called a balanced delay tree. It’s recursively
defined by a tree body and a chain. The
connection is by a [4:2]. So the tree grows
as 1,1,3,5,7,.. in CSA levels

• It effectively becomes a high order array
with w=5 and d= O (2 sqrt n)

Computer Architecture & Arithmetic Group 33 Stanford University

ZM tree
Type 1

Computer Architecture & Arithmetic Group 34 Stanford University

ZM tree, type1
Showing w=5 Same, replacing

2 (3,2) with a [4:2]

Computer Architecture & Arithmetic Group 35 Stanford University

Overturned staircase (OS) tree (Mou
and Jutnad ’90)

• Similar to ZM but achieves Wallace tree
type depth for most values of n.

• Recursively defined to connect branch of
depth k-2 (CSAs) to body of depth k-1 to
form tree of depth k.

• As with ZM higher order (types) are
possible, with less regularity.

Computer Architecture & Arithmetic Group 36 Stanford University

Advanced computer ArithmeticEE 486 Feb 4, 2003Winter 02-03

Prof. M. J. FlynnM. J. Flynn 7

Computer Architecture & Arithmetic Group 37 Stanford University

Multiply

• There’s a broad tradeoff in topology
allowing the designer to select w and d to
optimize the performance of the multiplier

• Of course the pp reduction is only one part
of the structure. It must be compatible with
the pp generation and the CPA.

