

Reducing the pp's

- The basic unit of reduction is the CSA (carry save adder)
- This is simply a binary full adder that takes 3 inputs of the same weight and provides 2 outputs, sum and carry. It's also called a (3,2) counter.
- In adding 3 numbers X,Y and Z we reduce the 3 operand to 2 and then do a single CPA

Multiplier topology

- Refers to the way bit positions in the pp reduction are interconnected.
- · Can be either arrays or trees
- Two important measures of a topology are 1) the minimum number of wires needed to interconnect the counters within a single bit position, and 2) the number of counter delays required to reduce the pp's to the 2 inputs to the CPA.

Linear arrays

- · In a simple array each cell is a CSA
- To add n operands takes n-2 CSA levels plus a final CPA or 2(n-2) + CPA gate delays.
- While relative slow linear arrays use a minimum width of wiring channel.
- Number of wiring tracks/bit channel is w.
- w is determined by the topology. Some circuit family may require 2w to implement the design.

· Arrays minimize w at the expense of gate delays. • Wiring channel can determine the column

Wires vs. gates

- bit pitch, forcing larger designs with more overall wire.
- · Some circuit techniques use 2 wires/signal (eg dual rail domino), while fast they can only be used when w can accommodate it.

Double arrays • A single linear arrays has w=3 and h=n-2. · A double array create 2 sub arrays of h=(n-2)/2; provides 4 pp's to be summed by a [4:2] and then a CPA. • The double array has w=5 Computer Architecture & Arithmetic Group Stanford University

Trees • Trees differ from arrays in that they optimize depth (the number of counter delays at the expense of width,w. • The width of a tree (number of wires per bit position) is a function of n, the height of the pp reduction array. • Trees are either regular whose width is a known function of n or irregular where w is determined by design layout.

Counter considerations

- A ROM can be used to implement any counter: (Σc_i)x d, e.g. (2,2,2,2,2,6)
- Popular counters usually maximize the output states, so that d, almost a power of 2
- Counters are usually realized from (3,2)'s perhaps somewhat reconfigured.
- Can also have direct realizations using custom logic, PLAs tables, etc.

Compressors and counters

- Wallace trees are irregular in structure and are difficult to layout as their wiring requirements are determined only at layout
- A more regular tree is a binary tree. This is implemented using [4:2] compressors, this is a form of (5,3) counter. It can be implemented using 2 (3,2) counters, although it's possible to reconfigure these to create a [4:2] delay faster than 2 x (3,2) delays

- Other regular trees are possible using (3,2) or other counters
- The ZM (Zuras-McAllister '86) tree is also called a balanced delay tree. It's recursively defined by a tree body and a chain. The connection is by a [4:2]. So the tree grows as 1,1,3,5,7,.. in CSA levels
- It effectively becomes a high order array with w=5 and d= **O** (2 sqrt n)

Overturned staircase (OS) tree (Mou and Jutnad '90)

- Similar to ZM but achieves Wallace tree type depth for most values of n.
- Recursively defined to connect branch of depth k-2 (CSAs) to body of depth k-1 to form tree of depth k.
- As with ZM higher order (types) are possible, with less regularity.

Multiply

- There's a broad tradeoff in topology allowing the designer to select w and d to optimize the performance of the multiplier
- Of course the pp reduction is only one part of the structure. It must be compatible with the pp generation and the CPA.

