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Parallel Multiplication
1 Simultaneous generation of partial products
2 Parallel reduction of partial products
3 Carry Propagate Addition (CPA)

Parallel generation of partial products
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Using AND gate as 1x1-bit multiplier DOT representation
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Generation of PP’s Using ROMs
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Generation of PP’s Using ROMs
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Booth’s Algorithm
Observation: We can replace a string of 1’s in the multiplier by +1 and -1.

Example:
. . . 0 1 1 1 1 1 0 . . .
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. . . 1 0 0 0 0 0 0 . . .
- 1
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Booth’s Algorithm
+ Reduces the number of partial products which in turn reduces the

hardware and delay required to sum the partial products.

- Adds Delay into the formation of the Partial Products.

• Works well for serial multiplication that can tolerate variable 
latency operations by reducing the number of serial additions 
required for the multiplication.

• The number of serial additions depends on the data (multiplicand).

• Worst case 8-bit  multiplicand requires 8 additions
01010101 <=> 1 -1  1 -1  1 -1  1 -1

• Parallel systems generally are designed for worst case hardware 
and latency requirements.  Standard booth 2 does not significantly 
reduce the worst case number of partial products.
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Modified Booth 2 

• Booth 2 modified to produce at most n/2+1 
partial products.  

Algorithm: (for unsigned numbers)

1)  Pad the LSB with one zero.
2)  Pad the MSB with 2 zeros if n is even and 1 zero if n is odd. 
3)  Divide the multiplier into overlapping groups of 3-bits.
4)  Determine partial product scale factor from modified 

booth 2 encoding table.
5)  Compute the Multiplicand Multiples
6) Sum Partial Products
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Modified Booth 2

0 0  Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 0  

Example: (n=8-bits unsigned)
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3) Form 3-bit overlapping groups
for n=8 we have 5 groups

1) Pad LSB with 1 zero

2) n is even so Pad MSB with 2 zeros

4) Determine action from
table for each 3-bit group
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Modified Booth 2

5) Compute Multiplicand Scale Factor (~4 gate delays)
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Modified Booth 2
6) Sum Partial Products
• Sign extend partial products to the full width of the final result
• Logic may replace the A9, B9, C9, D9, and E9 sign extention bits.
• Yi+1 bit determines if the  multiple needs to be complemented 

A9 . . . A9 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

B9 . . . B8 B7 B6 B5 B4 B3 B2 B1 B0            Y1

C9 . . . C6 C5 C4 C3 C2 C1 C0 Y3

D9 . . . D4 D3 D2 D1 D0 Y5

E9 . . . E2 E1 E0 Y7

S15. . . S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

(Y1 Y0 0 ) 
(Y3 Y2 Y1) 
(Y5 Y4 Y3) 
(Y7 Y6 Y5) 

( 0 0 Y7) 

Partial Products
Multiplicand

Yi+1 Yi YI-1
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Modified Booth 2
Algorithm Extension: (for signed multiplier)

1)  Pad the LSB with one zero.
2) If n is even don’t pad the MSB ( n/2 PP’s) and   

if n is odd sign extend the MSB by 1 bit ( n+1/2 PP’s). 
3)  Divide the multiplier into overlapping groups of 3-bits.
4)  Determine partial product factor from table. 
5)  Compute the Multiplicand Multiples
6) Sum Partial Products n Even:

Xn-1 Xn-2 Xn-2

0 x x 
1       x x 

n Odd:

Ø Xn-1 Xn-2

0 0       x 
1       1       x 

Positive:
Negative:
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Modified Booth 2
Algorithm Extension: (for signed multiplicand)

Nothing the algorithm works fine !

• The multiplicand may be represented in 2’s complement code.

• The scale factors (0, +X, +2X, -X, and -2X) are handled correctly.
• Shift left for 2 times weighting.
•2’s complement the multiplicand for subtraction.
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Booth 3 
• Reduces the partial products to ~n/3

• Form overlapping groups of 4 bits.

0  Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 0  

• Booth 3 Encoding
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Partially Redundant Booth 3
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Partially Redundant Booth 3


