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Multiplication Add-and-Shift Algorithm

Multiplicand “X 110 6
Multiplier “yr x 101 x5
110
Partial Products “PP” 000
110
Result “s” 11110 30
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Generation of PP’s Using ROMs

4b x 4b Multiply Using
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Parallel Multiplication
1 Simultaneous generation of partial products
2 Parallel reduction of partial products
3 Carry Propagate Addition (CPA)
Parallel generation of partial products
Using AND gate as 1x1-bit multiplier DOT representation
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Generation of PP’s Using ROMs
4, 8, and 16 bit Multiply
8 x 8 bit Multiply using using 256x8bit ROMs
256x8b ROMs 16x16 bit
8x8 bit
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256x8-bit ROM 8b x 8b Multiply Using
x{ =g = 256x8-bit ROMs
—s E— (R
NELLE
)
ERE)
Computer Architecture & Arithmetic Group 4 Stanford University A0,
, .
Booth’s Algorithm
Observation: We can replace astring of 1'sin the multiplier by +1 and -1.
Example: .0111110...
-1
.10000-10...
xo11111) X*(10000-1)
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Booth’s Algorithm

Reduces the number of partial products which in turn reduces the
hardware and delay required to sum the partial products.
Adds Delay into the formation of the Partial Products.

+

Works well for serial multiplication that can tolerate variable
latency operations by reducing the number of serial additions
required for the multiplication.

The number of serial additions depends on the data (multiplicand).

Worst case 8-bit multiplicand requires 8 additions
01010101<=>1-11-11-11-1

Parallel systems generally are designed for worst case hardware

and latency requirements. Standard booth 2 does not significantly

reduce the worst case number of partial products.
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Modified Booth 2

* Booth 2 modified to produce at most "/,+1
partial products.

Algorithm: (for unsigned number s)

1) Padthe LSB with one zero.
2) Pad the M SB with 2 zerosif niseven and 1 zero if nisodd.
3) Divide the multiplier into overlapping groups of 3-bits.
4) Determine partial product scale factor from modified
booth 2 encoding table.
5) Compute the Multiplicand Multiples
6) Sum Partial Products

Modified Booth 2

4) Determine action from

Example: (n=8-bitsunsigned)  tablefor each 3-bit group

Scale
1) Pad LSB with 1 zero Yia Y; Yii Factor
2) niseven so Pad MSB with 2 zeros 0 0 0 +0
0O 0 1 +X
01 O +X
00Y7Y6Y5Y4Y3Y2Y1Y00‘ 0 1 1 +2X
—— —— 1 0 O -2X
. ) 1 0 1 -X
3) Form 3-bit overlapping groups 11 0 X
for n=8 we have 5 groups 1 1 1 0
Lob
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Modified Booth 2

6) Sum Partial Products

* Sign extend partial products to the full width of the final result
« Logic may replacethe Ag, By, Cq, Dg, and Eq sign extention bits.
* Y, bit determinesif the multiple needs to be complemented

FiTReS
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Modified Booth 2
5) Compute M ultiplicand Scale Factor (-4 gate delays)
Modified Booth 2 Mux Control
Direct Multiplier Multiplier Logic
X; X1 0
XY Scale
b Factor Action
> +0 Mux 0
+X Mux X;
Yin +2X  Mux X,
:' -X Mux X;
. ‘ = 2% Mux X,
ij
PP,
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Modified Booth 2

Algorithm Extension: (for signed multiplier)

1) Pad the LSB with one zero.
2) If niseven don’t pad theMSB ( "/, PP’s) and
if nisodd sign extend the MSB by 1 bit (™/, PP’s).
3) Divide the multiplier into overlapping groups of 3-bits.
4) Determine partial product factor from table.
5) Compute the Multiplicand Multiples

) Multiplicand

Partial Products A

Ag. « «Ag Ag Ag A; Ag Ag A, Ay Ay Ap Ay (Y1Y,0)
Bg...Bg B, Bg Bs By By B, B, By Y, (Y3Y,Y)
Cy.++CsCsCCC C Cp Yy (Y5 Y4 Yo
Dyg...D,D;D,D; Dy Ys (Y7 Y6 Ys)
Ey...E, B Ep Yy (0 0Y,)
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6) Sum Partial Products n Even: n odd:
/‘/% /—/%
Xn-l Xn-z Xn-z 0 Xn-l Xn-z
Positivee 0 x X 0&=0 x
Negativee 1 X X 1<=1 x
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Modified Booth 2

Algorithm Extension: (for signed multiplicand)

Nothing the algorithm works fine !
« The multiplicand may be represented in 2’s complement code.
« The scale factors (0, +X, +2X, -X, and -2X) are handled correctly.

« Shift left for 2 times weighting.
+2’s complement the multiplicand for subtraction.
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Booth 3

* Reducesthe partial productsto ~"/
» Form overlapping groups of 4 bits.
/—/%

[0Y; Yg Yo Yo Y5 Y, Y, Y, 0

%(_/
» Booth 3 Encoding Scale Scale
YioYir Yi Yoy Factor YipYis Y Yoy Factor
0000 + |10 0 0 -4X
. 0 0 0 1 +X 1 0 0 1 -3X
Not(_a: 3xisahard 0010 +X |10 1 0 -3x
multiple that must 001 1 +42X71 0 1 1 -2X
00100 +X |11 0 0 -2X
be precomputed 00101 +X |11 01 X
0 1 1 0 +3X 11 1 0 -X
0 1 1 1 +4X 11 1 1 -0
N
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Partially Redundant Booth 3

Fully redundant form
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Partially redundant form

ez

Computer Architecture & Arithmetic Group 15 Stanford University X0,

Partially Redundant Booth 3
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