
Lecture 7 EE 486

M.J. Flynn 1

Computer Architecture & Arithmetic Group 1 Stanford University

EE 486 lecture 7: Integer Multiplication

M. J. Flynn

slides prepared by Albert Liddicoat and Hossam Fahmy

Computer Architecture & Arithmetic Group 2 Stanford University

Multiplication Add-and-Shift Algorithm

Multiplicand
Multiplier

Partial Products

Result

1 1 0
1 0 1

1 1 0
0 0 0

1 1 0

1 1 1 1 0

“X”

“Y”

“PP”

“S”

6
5

30

x x

ALU

X Y

P

0

Shift

Shift

Computer Architecture & Arithmetic Group 3 Stanford University

Parallel Multiplication
1 Simultaneous generation of partial products
2 Parallel reduction of partial products
3 Carry Propagate Addition (CPA)

Parallel generation of partial products

X0X1
Y2 Y1 Y0

X0Y0X1Y0X2Y0
X0Y1X1Y1X2Y1

X0Y2X1Y2X2Y2

R0R1R2R3R4R5

x
X2 ... X0X1

Y2 Y1 Y0x
X2

...

Using AND gate as 1x1-bit multiplier DOT representation

Computer Architecture & Arithmetic Group 4 Stanford University

Generation of PP’s Using ROMs

A
dd

re
ss

D
at

a

256x8-bit ROM

X

Y
R

4b x 4b Multiply Using

X3 X2 X1 X0X7 X6 X5 X4

Y3 Y2 Y1 Y0Y7 Y6 Y5 Y4

X3 X2 X1 X0 * Y3 Y2 Y1 Y0

* Y3 Y2 Y1 Y0X7 X6 X5 X4

* Y7 Y6 Y5 Y4

* Y7 Y6 Y5 Y4

X3 X2 X1 X0

X7 X6 X5 X4

x

8b x 8b Multiply Using

256x8-bit ROMs

Computer Architecture & Arithmetic Group 5 Stanford University

Generation of PP’s Using ROMs

a
b
c

d

a
c

b
d

8 x 8 bit Multiply using
256x8b ROMs

4x4 bit

8x8 bit

16x16 bit

4, 8, and 16 bit Multiply
using 256x8bit ROMs

n h CSA Delay

4
8
16
32
64

1
3
7
15
31

0
1
4
6
8

Computer Architecture & Arithmetic Group 6 Stanford University

Booth’s Algorithm
Observation: We can replace a string of 1’s in the multiplier by +1 and -1.

Example:
. . . 0 1 1 1 1 1 0 . . .

+1
- 1

. . . 1 0 0 0 0 0 0 . . .
- 1

. . . 1 0 0 0 0-1 0 . . .

. . . 0 1 1 1 1 1 0 . . .

X
X

X
X

X

X*(0 1 1 1 1 1)

0

1
1
1
1
0

1

Y
X*(1 0 0 0 0-1)

-X
0

0
0

0

0
0
0
0
1

-1

Y

X

Lecture 7 EE 486

M.J. Flynn 2

Computer Architecture & Arithmetic Group 7 Stanford University

Booth’s Algorithm
+ Reduces the number of partial products which in turn reduces the

hardware and delay required to sum the partial products.

- Adds Delay into the formation of the Partial Products.

• Works well for serial multiplication that can tolerate variable
latency operations by reducing the number of serial additions
required for the multiplication.

• The number of serial additions depends on the data (multiplicand).

• Worst case 8-bit multiplicand requires 8 additions
01010101 <=> 1 -1 1 -1 1 -1 1 -1

• Parallel systems generally are designed for worst case hardware
and latency requirements. Standard booth 2 does not significantly
reduce the worst case number of partial products.

Computer Architecture & Arithmetic Group 8 Stanford University

Modified Booth 2

• Booth 2 modified to produce at most n/2+1
partial products.

Algorithm: (for unsigned numbers)

1) Pad the LSB with one zero.
2) Pad the MSB with 2 zeros if n is even and 1 zero if n is odd.
3) Divide the multiplier into overlapping groups of 3-bits.
4) Determine partial product scale factor from modified

booth 2 encoding table.
5) Compute the Multiplicand Multiples
6) Sum Partial Products

Computer Architecture & Arithmetic Group 9 Stanford University

Modified Booth 2

0 0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 0

Example: (n=8-bits unsigned)

YiYi+1 Yi-1

Scale
Factor

0
0
0
1
1
1
1

0 0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

+0
+X

+X
+2X

-2X
-X

-X
-0

3) Form 3-bit overlapping groups
for n=8 we have 5 groups

1) Pad LSB with 1 zero

2) n is even so Pad MSB with 2 zeros

4) Determine action from
table for each 3-bit group

Computer Architecture & Arithmetic Group 10 Stanford University

Modified Booth 2

5) Compute Multiplicand Scale Factor (~4 gate delays)

YjXi

PPij

Xi Xi-1 0

Yj+1

Yj

Yj-1

PPij

Direct Multiplier

Modified Booth 2
Multiplier

Mux Control

Logic

Scale
Factor Action

+0 Mux 0

+X

+2X

-2X

-X

Mux Xi

Mux Xi-1

Mux Xi-1’

Mux Xi’

Computer Architecture & Arithmetic Group 11 Stanford University

Modified Booth 2
6) Sum Partial Products
• Sign extend partial products to the full width of the final result
• Logic may replace the A9, B9, C9, D9, and E9 sign extention bits.
• Yi+1 bit determines if the multiple needs to be complemented

A9 . . . A9 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

B9 . . . B8 B7 B6 B5 B4 B3 B2 B1 B0 Y1

C9 . . . C6 C5 C4 C3 C2 C1 C0 Y3

D9 . . . D4 D3 D2 D1 D0 Y5

E9 . . . E2 E1 E0 Y7

S15. . . S10 S9 S8 S7 S6 S5 S4 S3 S2 S1 S0

(Y1 Y0 0)
(Y3 Y2 Y1)
(Y5 Y4 Y3)
(Y7 Y6 Y5)

(0 0 Y7)

Partial Products
Multiplicand

Yi+1 Yi YI-1

Computer Architecture & Arithmetic Group 12 Stanford University

Modified Booth 2
Algorithm Extension: (for signed multiplier)

1) Pad the LSB with one zero.
2) If n is even don’t pad the MSB (n/2 PP’s) and

if n is odd sign extend the MSB by 1 bit (n+1/2 PP’s).
3) Divide the multiplier into overlapping groups of 3-bits.
4) Determine partial product factor from table.
5) Compute the Multiplicand Multiples
6) Sum Partial Products n Even:

Xn-1 Xn-2 Xn-2

0 x x
1 x x

n Odd:

Ø Xn-1 Xn-2

0 0 x
1 1 x

Positive:
Negative:

Lecture 7 EE 486

M.J. Flynn 3

Computer Architecture & Arithmetic Group 13 Stanford University

Modified Booth 2
Algorithm Extension: (for signed multiplicand)

Nothing the algorithm works fine !

• The multiplicand may be represented in 2’s complement code.

• The scale factors (0, +X, +2X, -X, and -2X) are handled correctly.
• Shift left for 2 times weighting.
•2’s complement the multiplicand for subtraction.

Computer Architecture & Arithmetic Group 14 Stanford University

Booth 3
• Reduces the partial products to ~n/3

• Form overlapping groups of 4 bits.

0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 0

• Booth 3 Encoding
YiYi+1 Yi-1

Scale
Factor

0
0
0
1
1
1
1

0 0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

-4X
-3X

-2X
-2X
-X
-X
-0

Yi+2

1
1
1
1
1
1
1

1

YiYi+1 Yi-1

Scale
Factor

0
0
0
1
1
1
1

0 0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

+0
+X
+X

+2X
+2X
+3X

Yi+2

0
0
0
0
0
0
0

0

+3X
+4X

-3XNote: 3x is a hard
multiple that must

be precomputed

Computer Architecture & Arithmetic Group 15 Stanford University

Partially Redundant Booth 3

Computer Architecture & Arithmetic Group 16 Stanford University

Partially Redundant Booth 3

